Glutamate and its Derivatives in the Regulation of Peripheral Cholinergic Neurotransmission

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the CNS, glutamate is the main excitatory neurotransmitter, while gamma-aminobutyric acid (GABA) functions as the main inhibitory neurotransmitter. N-acetylaspartylglutamate (NAAG), in turn, is the most abundant neuropeptide in the CNS and is also capable of acting as a neurotransmitter. This review analyzes experimental data proving the participation of all three of these signaling molecules in the functioning of the neuromuscular junction, which is a “classical” cholinergic synapse of the peripheral nervous system and, until recently, was considered the most studied synaptic junction in the organism of vertebrates and humans. To date, all three signaling molecules have been identified in the area of the neuromuscular junction, data have been obtained on their release into the synaptic cleft, and receptor proteins have been discovered whose activation affects the processes of both spontaneous and evoked quantal release of acetylcholine. It is noted that in mammalian synapses, glutamate, NAAG and GABA unidirectionally inhibit the process of non-quantal release of acetylcholine. The mechanisms of these modulatory pathways of glutamate and its derivatives signaling are realized with the involvement of all three compartments of the synaptic contact: nerve ending, muscle fiber and perisynaptic Schwann cell.

Full Text

Restricted Access

About the authors

N. S. Fedorov

Kazan Institute of Biochemistry and Biophysics, RAS

Email: artur57@list.ru
Russian Federation, Kazan

E. S. Nevsky

Kazan Institute of Biochemistry and Biophysics, RAS; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University

Email: artur57@list.ru
Russian Federation, Kazan; Kazan

A. R. Tokmakova

Kazan Institute of Biochemistry and Biophysics, RAS

Email: artur57@list.ru
Russian Federation, Kazan

A. I. Malomouzh

Kazan Institute of Biochemistry and Biophysics, RAS; Kazan National Research Technical University

Author for correspondence.
Email: artur57@list.ru
Russian Federation, Kazan; Kazan

References

  1. Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 48: 98–111. https://doi.org/10.1016/j.brainresrev.2004.08.006
  2. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16: 710–715. https://doi.org/10.1016/j.conb.2006.09.002
  3. Danışman B, Akçay G, Gökçek-Saraç Ç, Kantar D, Aslan M, Derin N (2022) The Role of Acetylcholine on the Effects of Different Doses of Sulfite in Learning and Memory. Neurochem Res 47: 3331–3343. https://doi.org/10.1007/s11064-022-03684-z
  4. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121: 799–817. https://doi.org/10.1007/s00702-014-1180-8
  5. Neale JH, Bzdega T, Wroblewska B (2000) N-Acetylaspartylglutamate: Тhe most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 75: 443–452. https://doi.org/10.1046/j.1471-4159.2000.0750443.x
  6. Obata K (2013) Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. Proc Jpn Acad Ser B Phys Biol Sci 89: 139–156. https://doi.org/10.2183/pjab.89.139
  7. Valenstein ES (2002) The discovery of chemical neurotransmitters. Brain Cogn 49: 73–95. https://doi.org/10.1006/brcg.2001.1487
  8. Katz B (2003) Neural transmitter release: From quantal secretion to exocytosis and beyond. J Neurocytol 32: 437–446. https://doi.org/10.1023/B:NEUR.0000020603.84188.03
  9. Vyskocil F, Malomouzh AI, Nikolsky EE (2009) Non-quantal acetylcholine release at the neuromuscular junction. Physiol Res 58: 763–784. https://doi.org/10.33549/physiolres.931865
  10. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64: 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547
  11. Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M (2015) New insights into short-term synaptic facilitation at the frog neuromuscular junction. J Neurophysiol 113: 71–87. https://doi.org/10.1152/jn.00198.2014
  12. Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64: 393–429. https://doi.org/10.1016/s0301-0082(00)00055-1
  13. Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94: 20–24. https://doi.org/10.1113/expphysiol.2008.043620
  14. Salpeter MM (1987) The vertebrate neuromuscular junction. New York. Alan R. Liss Inc.
  15. Hall ZW, Sanes JR (1993) Synaptic structure and development: The neuromuscular junction. Cell 72 Suppl: 99–121. https://doi.org/10.1016/s0092-8674(05)80031-5
  16. Hughes BW, Kusner LL, Kaminski HJ (2006) Molecular architecture of the neuromuscular junction. Muscle Nerve 33: 445–461. https://doi.org/10.1002/mus.20440
  17. Slater CR (2015) The functional organization of motor nerve terminals. Prog Neurobiol 134: 55–103. https://doi.org/10.1016/j.pneurobio.2015.09.004
  18. Willadt S, Nash M, Slater C (2018) Age-related changes in the structure and function of mammalian neuromuscular junctions. Ann N Y Acad Sci 1412: 41–53. https://doi.org/10.1111/nyas.13521
  19. Malomouzh AI, Nikolsky EE (2018) Modern concepts of cholinergic neurotransmission at the motor synapse. Biochemistry (Moscow) Suppl Series A Membr and Cell Biol 12 (3): 209–222. https://doi.org/10.1134/S1990747818030078
  20. Slater CR (2024) Neuromuscular Transmission in a Biological Context. Compr Physiol 14: 5641–5702. https://doi.org/10.1002/cphy.c240001
  21. Legay C, Mei L (2017) Moving forward with the neuromuscular junction. J Neurochem 142 Suppl 2: 59–63. https://doi.org/10.1111/jnc.14028
  22. Lacomis D (2024) What Is in the Neuromuscular Junction Literature? J Clin Neuromuscul Dis 26: 90–99. https://doi.org/10.1097/CND.0000000000000504
  23. El-Wahsh S, Fraser C, Vucic S, Reddel S (2024) Neuromuscular junction disorders: Mimics and chameleons. Pract Neurol 24: 467–477. https://doi.org/10.1136/pn-2024-004148
  24. Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F (2024) Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 16: 3271. https://doi.org/10.3390/nu16193271
  25. Attarian S (2024) New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 180: 971–981. https://doi.org/10.1016/j.neurol.2024.09.006
  26. Ramdas S, Painho T, Vanegas MI, Famili DT, Lim MJ, Jungbluth H (2024) Targeted Treatments for Myasthenia Gravis in Children and Adolescents. Paediatr Drugs 26: 719–740. https://doi.org/10.1007/s40272-024-00649-3
  27. Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE (2022) ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses. Front Cell Neurosci 16: 866802. https://doi.org/10.3389/fncel.2022.866802
  28. Arkhipov AY, Fedorov NS, Nurullin LF, Khabibrakhmanov AN, Mukhamedyarov MA, Samigullin DV, Malomouzh AI (2023) Activation of TRPV1 Channels Inhibits the Release of Acetylcholine and Improves Muscle Contractility in Mice. Cell Mol Neurobiol 43: 4157–4172. https://doi.org/10.1007/s10571-023-01403-y
  29. Tarasova E, Bogacheva P, Chernyshev K, Balezina O (2024) Quantal size increase induced by the endocannabinoid 2-arachidonoylglycerol requires activation of CGRP receptors in mouse motor synapses. Synapse 78: e22281. https://doi.org/10.1002/syn.22281
  30. Giniatullin AR, Mukhutdinova KA, Petrov AM (2024) Mechanism of Purinergic Regulation of Neurotransmission in Mouse Neuromuscular Junction: The Role of Redox Signaling and Lipid Rafts. Neurochem Res 49: 2021–2037. https://doi.org/10.1007/s11064-024-04153-5
  31. Gafurova CR, Tsentsevitsky AN, Fedorov NS, Khaziev AN, Malomouzh AI, Petrov AM (2024) β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch. Mol Neurobiol 61: 6805–6821. https://doi.org/10.1007/s12035-024-03991-2
  32. Polishchuk A, Cilleros-Mañé V, Balanyà-Segura M, Just-Borràs L, Forniés-Mariné A, Silvera-Simón C, Tomàs M, Jami El Hirchi M, Hurtado E, Tomàs J, Lanuza MA (2024) BDNF/TrkB signalling, in cooperation with muscarinic signalling, retrogradely regulates PKA pathway to phosphorylate SNAP-25 and Synapsin-1 at the neuromuscular junction. Cell Commun Signal 22: 371. https://doi.org/10.1186/s12964-024-01735-2
  33. Takamori M (2017) Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 18: 896. https://doi.org/10.3390/ijms18040896
  34. Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A (2020) The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 13: 610964. https://doi.org/10.3389/fnmol.2020.610964
  35. Bosch-Queralt M, Fledrich R, Stassart RM (2023) Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 176: 105952. https://doi.org/10.1016/j.nbd.2022.105952
  36. Zakirjanova GF, Giniatullin AR, Gafurova CR, Malomouzh AI, Fedorov NS, Khaziev AN, Tsentsevitsky AN, Petrov AM (2023) Effects of cholesterol oxidase on neurotransmission and acetylcholine levels at the mice neuromuscular junctions. Arch Biochem Biophys 749: 109803. https://doi.org/10.1016/j.abb.2023.109803
  37. Li Y, Badawi Y, Meriney SD (2024) Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions. Cells 13: 1684. https://doi.org/10.3390/cells13201684
  38. Macleod GT, Zinsmaier KE (2006) Synaptic homeostasis on the fast track. Neuron 52: 569–571. https://doi.org/10.1016/j.neuron.2006.11.006
  39. Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond B Biol Sci 196: 59–72. https://doi.org/10.1098/rspb.1977.0029
  40. Маломуж АИ, Никольский ЕЕ (2010) Неквантовое освобождение медиатора: миф или реальность? Успехи физиол наук 41(2): 27–43. [Malomouzh AI, Nikolsky EE (2010) Nonquantal mediator release: Myth or reality? Uspekhi Fiziol Nauk 41(2): 27–43. (In Russ)].
  41. Ramirez DMO, Kavalali ET (2011) Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol 21: 275–282. https://doi.org/10.1016/j.conb.2011.01.007
  42. Melom JE, Akbergenova Y, Gavornik JP, Littleton JT (2013) Spontaneous and evoked release are independently regulated at individual active zones. J Neurosci 33: 17253–17263. https://doi.org/10.1523/JNEUROSCI.3334-13.2013
  43. Walter AM, Haucke V, Sigrist SJ (2014) Neurotransmission: Spontaneous and evoked release filing for divorce. Curr Biol 24: R192-R194. https://doi.org/10.1016/j.cub.2014.01.037
  44. Peled ES, Newman ZL, Isacoff EY (2014) Evoked and spontaneous transmission favored by distinct sets of synapses. Curr Biol 24: 484–493. https://doi.org/10.1016/j.cub.2014.01.022
  45. Teixeira G, Vieira LB, Gomez MV, Guatimosim C (2012) Cholesterol as a key player in the balance of evoked and spontaneous glutamate release in rat brain cortical synaptosomes. Neurochem Int 61: 1151–1159. https://doi.org/10.1016/j.neuint.2012.08.008
  46. Petrov AM, Yakovleva AA, Zefirov AL (2014) Role of membrane cholesterol in spontaneous exocytosis at frog neuromuscular synapses: Reactive oxygen species-calcium interplay. J Physiol 592: 4995–5009. https://doi.org/10.1113/jphysiol.2014.279695
  47. Cisterna BA, Vargas AA, Puebla C, Fernández P, Escamilla R, Lagos CF, Matus MF, Vilos C, Cea LA, Barnafi E, Gaete H, Escobar DF, Cardozo CP, Sáez JC (2020) Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun 11: 1073. https://doi.org/10.1038/s41467-019-14063-8
  48. Nikolsky EE, Oranska TI, Vyskocil F (1996) Non-quantal acetylcholine release in the mouse diaphragm after phrenic nerve crush and during recovery. Exp Physiol 81: 341–348. https://doi.org/10.1113/expphysiol.1996.sp003938
  49. Bray JJ, Forrest JW, Hubbard JI (1982) Evidence for the role of non-quantal acetylcholine in the maintenance of the membrane potential of rat skeletal muscle. J Physiol 326: 285–296. https://doi.org/10.1113/jphysiol.1982.sp014192
  50. Urazaev A, Naumenko N, Malomough A, Nikolsky E, Vyskocil F (2000) Carbachol and acetylcholine delay the early postdenervation depolarization of muscle fibres through M1-cholinergic receptors. Neurosci Res 37: 255–263. https://doi.org/10.1016/s0168-0102(00)00126-7
  51. Tsentsevitsky AN, Kovyazina IV, Nurullin LF, Nikolsky EE (2017) Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) modulate the acetylcholine secretion in the frog neuromuscular junction. Neurosci Lett 649: 62–69. https://doi.org/10.1016/j.neulet.2017.04.015
  52. Kovyazina IV, Khamidullina AA (2023) Muscarinic Cholinoreceptors in Skeletal Muscle: Localization and Functional Role. Acta Naturae 15: 44–55. https://doi.org/10.32607/actanaturae.25259
  53. Zhilyakov N, Arkhipov A, Malomouzh A, Samigullin D (2021) Activation of Neuronal Nicotinic Receptors Inhibits Acetylcholine Release in the Neuromuscular Junction by Increasing Ca2+ Flux through Cav1 Channels. Int J Mol Sci 22: 9031. https://doi.org/10.3390/ijms22169031
  54. Noronha-Matos JB, Sousa-Soares C, Correia-de-Sá P (2024) Differential participation of CaMKII/ROCK and NOS pathways in the cholinergic inhibitory drive operated by nicotinic α7 receptors in perisynaptic Schwann cells. Biochem Pharmacol 231: 116649. https://doi.org/10.1016/j.bcp.2024.116649
  55. Sousa-Soares C, Noronha-Matos JB, Correia-de-Sá P (2023) Purinergic Tuning of the Tripartite Neuromuscular Synapse. Mol Neurobiol 60: 4084–4104. https://doi.org/10.1007/s12035-023-03317-8
  56. Petrov AM, Zakirjanova GF, Kovyazina IV, Tsentsevitsky AN, Bukharaeva EA (2022) Adrenergic receptors control frequency-dependent switching of the exocytosis mode between “full-collapse” and “kiss-and-run” in murine motor nerve terminal. Life Sci 296: 120433. https://doi.org/10.1016/j.lfs.2022.120433
  57. Dmitrieva SA, Vologin SG, Tsentsevitsky AN, Arkhipov AY, Khuzakhmetova VF, Sibgatullina GV, Bukharaeva EA (2023) Sympathetic Innervation and Endogenous Catecholamines in Neuromuscular Preparations of Muscles with Different Functional Profiles. Biochemistry (Mosc) 88(3): 364-373. https://doi.org/10.31857/S0320972523030065
  58. Haynes EMK, Kalmar JM, Vis-Dunbar M, Crosby KM, Mriduraj A, Jakobi JM (2023) A systematic review of how cannabinoids affect motoneuron output. J Neurophysiol 130: 247–263. https://doi.org/10.1152/jn.00460.2022
  59. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low C-M, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF (2021) Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 73: 298–487. https://doi.org/10.1124/pharmrev.120.000131
  60. Gregory KJ, Goudet C (2021) International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 73: 521–569. https://doi.org/10.1124/pr.119.019133
  61. Kerkut GA, Shapira A, Walker RJ (1967) The transport of 14C-labelled material from CNS to and from muscle along a nerve trunk. Comp Biochem Physiol 23: 729–748. https://doi.org/10.1016/0010-406x(67)90337-4
  62. Vyas S, Bradford HF (1987) Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ. Neurosci Lett 82: 58–64. https://doi.org/10.1016/0304-3940(87)90171-6
  63. Fu WM, Liou HC, Chen YH, Wang SM (1998) Coexistence of glutamate and acetylcholine in the developing motoneurons. Chin J Physiol 41: 127–132.
  64. Meister B, Arvidsson U, Zhang X, Jacobsson G, Villar MJ, Hökfelt T (1993) Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurones. Neuroreport 5: 337–340. https://doi.org/10.1097/00001756-199312000-00040
  65. Waerhaug O, Ottersen OP (1993) Demonstration of glutamate-like immunoreactivity at rat neuromuscular junctions by quantitative electron microscopic immunocytochemistry. Anat Embryol (Berl) 188: 501–513. https://doi.org/10.1007/BF00190144
  66. Herzog E, Landry M, Buhler E, Bouali-Benazzouz R, Legay C, Henderson CE, Nagy F, Dreyfus P, Giros B, El Mestikawy S (2004) Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons. Eur J Neurosci 20: 1752–1760. https://doi.org/10.1111/j.1460-9568.2004.03628.x
  67. Boulland J-L, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT, Edwards RH, Storm-Mathisen J, Chaudhry FA (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480: 264–280. https://doi.org/10.1002/cne.20354
  68. Li H, Harlow ML (2014) Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP. Physiol Rep 2: e00206. https://doi.org/10.1002/phy2.206
  69. Francolini M, Brunelli G, Cambianica I, Barlati S, Barbon A, La Via L, Guarneri B, Boroni F, Lanzillotta A, Baiguera C, Ettorre M, Buffelli M, Spano P, Clementi F, Pizzi M (2009) Glutamatergic reinnervation and assembly of glutamatergic synapses in adult rat skeletal muscle occurs at cholinergic endplates. J Neuropathol Exp Neurol 68: 1103–1115. https://doi.org/10.1097/NEN.0b013e3181b7bfc8
  70. Rinholm JE, Slettaløkken G, Marcaggi P, Skare Ø, Storm-Mathisen J, Bergersen LH (2007) Subcellular localization of the glutamate transporters GLAST and GLT at the neuromuscular junction in rodents. Neuroscience 145: 579–591. https://doi.org/10.1016/j.neuroscience.2006.12.041
  71. Carozzi VA, Canta A, Oggioni N, Ceresa C, Marmiroli P, Konvalinka J, Zoia C, Bossi M, Ferrarese C, Tredici G, Cavaletti G (2008) Expression and distribution of “high affinity” glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J Anat 213: 539–546. https://doi.org/10.1111/j.1469-7580.2008.00984.x
  72. Pinard A, Lévesque S, Vallée J, Robitaille R (2003) Glutamatergic modulation of synaptic plasticity at a PNS vertebrate cholinergic synapse. Eur J Neurosci 18: 3241–3250. https://doi.org/10.1111/j.1460-9568.2003.03028.x
  73. Tsentsevitsky A, Nurullin L, Nikolsky E, Malomouzh A (2017) Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction. J Neurosci Res 95: 1391–1401. https://doi.org/10.1002/jnr.23977
  74. Walder KK, Ryan SB, Bzdega T, Olszewski RT, Neale JH, Lindgren CA (2013) Immunohistological and electrophysiological evidence that N-acetylaspartylglutamate is a co-transmitter at the vertebrate neuromuscular junction. Eur J Neurosci 37: 118–129. https://doi.org/10.1111/ejn.12027
  75. Pinard A, Robitaille R (2008) Nitric oxide dependence of glutamate-mediated modulation at a vertebrate neuromuscular junction. Eur J Neurosci 28: 577–587. https://doi.org/10.1111/j.1460-9568.2008.06355.x
  76. Berger UV, Carter RE, Coyle JT (1995) The immunocytochemical localization of N-acetylaspartyl glutamate, its hydrolysing enzyme NAALADase, and the NMDAR-1 receptor at a vertebrate neuromuscular junction. Neuroscience 64: 847–850. https://doi.org/10.1016/0306-4522(95)92578-8
  77. Grozdanovic Z, Gossrau R (1998) Co-localization of nitric oxide synthase I (NOS I) and NMDA receptor subunit 1 (NMDAR-1) at the neuromuscular junction in rat and mouse skeletal muscle. Cell Tissue Res 291: 57–63. https://doi.org/10.1007/s004410050979
  78. Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA (2009) Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 39: 343–349. https://doi.org/10.1002/mus.21099
  79. Malomouzh AI, Mukhtarov MR, Nikolsky EE, Vyskocil F, Lieberman EM, Urazaev AK (2003) Glutamate regulation of non-quantal release of acetylcholine in the rat neuromuscular junction. J Neurochem 85: 206–213. https://doi.org/10.1046/j.1471-4159.2003.01660.x
  80. Malomouzh AI, Nurullin LF, Arkhipova SS, Nikolsky EE (2011) NMDA receptors at the endplate of rat skeletal muscles: Рrecise postsynaptic localization. Muscle Nerve 44: 987–989. https://doi.org/10.1002/mus.22250
  81. Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81: 209–237. https://doi.org/10.1152/physrev.2001.81.1.209
  82. Mukhtarov MR, Vyskocil F, Urazaev AK, Nikolsky EE (1999) Non-quantal acetylcholine release is increased after nitric oxide synthase inhibition. Physiol Res 48: 315–317.
  83. Mukhtarov MR, Urazaev AK, Nikolsky EE, Vyskocil F (2000) Effect of nitric oxide and NO-synthase inhibition on nonquantal acetylcholine release in the rat diaphragm. Eur J Neurosci 12: 980–986. https://doi.org/10.1046/j.1460-9568.2000.00992.x
  84. Kasimov MR, Fatkhrakhmanova MR, Mukhutdinova KA, Petrov AM (2017) 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: Implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology 117: 61–73. https://doi.org/10.1016/j.neuropharm.2017.01.030
  85. Personius KE, Slusher BS, Udin SB (2016) Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination. J Neurosci 36: 8783–8789. https://doi.org/10.1523/JNEUROSCI.1181-16.2016
  86. Personius KE, Siebert D, Koch DW, Udin SB (2022) Blockage of neuromuscular glutamate receptors impairs reinnervation following nerve crush in adult mice. Front Cell Neurosci 16: 1000218. https://doi.org/10.3389/fncel.2022.1000218
  87. Neale JH, Olszewski RT, Zuo D, Janczura KJ, Profaci CP, Lavin KM, Madore JC, Bzdega T (2011) Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family. J Neurochem 118: 490–498. https://doi.org/10.1111/j.1471-4159.2011.07338.x
  88. Morland C, Nordengen K (2022) N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. Int J Mol Sci 23: 1268. https://doi.org/10.3390/ijms23031268
  89. Cassidy M, Neale JH (1993) N-acetylaspartylglutamate catabolism is achieved by an enzyme on the cell surface of neurons and glia. Neuropeptides 24: 271–278. https://doi.org/10.1016/0143-4179(93)90015-3
  90. Ory-Lavollée L, Blakely RD, Coyle JT (1987) Neurochemical and immunocytochemical studies on the distribution of N-acetyl-aspartylglutamate and N-acetyl-aspartate in rat spinal cord and some peripheral nervous tissues. J Neurochem 48: 895–899. https://doi.org/10.1111/j.1471-4159.1987.tb05601.x
  91. Fuhrman S, Palkovits M, Cassidy M, Neale JH (1994) The regional distribution of N-acetylaspartylglutamate (NAAG) and peptidase activity against NAAG in the rat nervous system. J Neurochem 62: 275–281. https://doi.org/10.1046/j.1471-4159.1994.62010275.x
  92. Malomouzh AI, Nikolsky EE, Lieberman EM, Sherman JA, Lubischer JL, Grossfeld RM, Urazaev AK (2005) Effect of N-acetylaspartylglutamate (NAAG) on non-quantal and spontaneous quantal release of acetylcholine at the neuromuscular synapse of rat. J Neurochem 94: 257–267. https://doi.org/10.1111/j.1471-4159.2005.03194.x
  93. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213: 1–47. https://doi.org/10.1016/s0074-7696(02)13011-7
  94. Ji X, Liu S, Li S, Li X, Luo A, Zhang X, Zhao Y (2024) GABA in early brain development: A dual role review. Int J Dev Neurosci 84:843–856. https://doi.org/10.1002/jdn.10387
  95. Omote H, Moriyama Y (2013) Vesicular neurotransmitter transporters: An approach for studying transporters with purified proteins. Physiology (Bethesda) 28: 39–50. https://doi.org/10.1152/physiol.00033.2012
  96. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60: 243–260. https://doi.org/10.1124/pr.108.00505
  97. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: Structure and function. Pharmacol Rev 54: 247–264. https://doi.org/10.1124/pr.54.2.247
  98. Naffaa MM, Hung S, Chebib M, Johnston GAR, Hanrahan JR (2017) GABA-ρ receptors: Distinctive functions and molecular pharmacology. Br J Pharmacol 174: 1881–1894. https://doi.org/10.1111/bph.13768
  99. Scimemi A (2014) Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8: 161. https://doi.org/10.3389/fncel.2014.00161
  100. Ryan RM, Ingram SL, Scimemi A (2021) Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 15: 670346. https://doi.org/10.3389/fncel.2021.670346
  101. Zhou Y, Danbolt NC (2013) GABA and Glutamate Transporters in Brain. Front Endocrinol (Lausanne) 4: 165. https://doi.org/10.3389/fendo.2013.00165
  102. Erdö SL, Wolff JR (1990) gamma-Aminobutyric acid outside the mammalian brain. J Neurochem 54: 363–372. https://doi.org/10.1111/j.1471-4159.1990.tb01882.x
  103. Malomouzh A, Ilyin V, Nikolsky E (2019) Components of the GABAergic signaling in the peripheral cholinergic synapses of vertebrates: A review. Amino Acids 51: 1093–1102. https://doi.org/10.1007/s00726-019-02754-x
  104. Nurullin LF, Nikolsky EE, Malomouzh AI (2018) Elements of molecular machinery of GABAergic signaling in the vertebrate cholinergic neuromuscular junction. Acta Histochem 120: 298–301. https://doi.org/10.1016/j.acthis.2018.02.003
  105. Chan-Palay V, Engel AG, Wu JY, Palay SL (1982) Coexistence in human and primate neuromuscular junctions of enzymes synthesizing acetylcholine, catecholamine, taurine, and gamma-aminobutyric acid. Proc Natl Acad Sci U S A 79: 7027–7030. https://doi.org/10.1073/pnas.79.22.7027
  106. Sibgatullina GV, Malomouzh AI (2020) GABA in developing rat skeletal muscle and motor neurons. Protoplasma 257: 1009–1015. https://doi.org/10.1007/s00709-020-01485-1
  107. Sibgatullina G, Al Ebrahim R, Gilizhdinova K, Tokmakova A, Malomouzh A (2024) Differentiation of Myoblasts in Culture: Focus on Serum and Gamma-Aminobutyric Acid. Cells Tissues Organs 213: 203–212. https://doi.org/10.1159/000529839
  108. Hatazawa Y, Senoo N, Tadaishi M, Ogawa Y, Ezaki O, Kamei Y, Miura S (2015) Metabolomic Analysis of the Skeletal Muscle of Mice Overexpressing PGC-1α. PLoS One 10: e0129084. https://doi.org/10.1371/journal.pone.0129084
  109. Roberts LD, Ashmore T, McNally BD, Murfitt SA, Fernandez BO, Feelisch M, Lindsay R, Siervo M, Williams EA, Murray AJ, Griffin JL (2017) Inorganic Nitrate Mimics Exercise-Stimulated Muscular Fiber-Type Switching and Myokine and γ-Aminobutyric Acid Release. Diabetes 66: 674–688. https://doi.org/10.2337/db16-0843
  110. Tsentsevitsky AN, Sibgatullina GV, Petrov AM, Malomouzh AI, Kovyazina IV (2024) GABA Receptors and Kv7 Channels as Targets for GABAergic Regulation of Acetylcholine Release in Frog Neuromuscular Junction. Neurochem Res 50: 25. https://doi.org/10.1007/s11064-024-04274-x
  111. Feng Z, Koirala S, Ko C-P (2005) Synapse-glia interactions at the vertebrate neuromuscular junction. Neuroscientist 11: 503–513. https://doi.org/10.1177/1073858405277409
  112. Gould TW, Ko C-P, Willison H, Robitaille R (2024) Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease. Cold Spring Harb Perspect Biol a041362. https://doi.org/10.1101/cshperspect.a041362
  113. Yoon B-E, Lee CJ (2014) GABA as a rising gliotransmitter. Front Neural Circuits 8: 141. https://doi.org/10.3389/fncir.2014.00141
  114. Christensen RK, Delgado-Lezama R, Russo RE, Lind BL, Alcocer EL, Rath MF, Fabbiani G, Schmitt N, Lauritzen M, Petersen AV, Carlsen EM, Perrier J-F (2018) Spinal dorsal horn astrocytes release GABA in response to synaptic activation. J Physiol 596: 4983–4994. https://doi.org/10.1113/JP276562
  115. Saunders A, Granger AJ, Sabatini BL (2015) Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife 4: e06412. https://doi.org/10.7554/eLife.06412
  116. Granger AJ, Wang W, Robertson K, El-Rifai M, Zanello AF, Bistrong K, Saunders A, Chow BW, Nuñez V, Turrero García M, Harwell CC, Gu C, Sabatini BL (2020) Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. Elife 9: e57749. https://doi.org/10.7554/eLife.57749
  117. Nair A, Teo YY, Augustine GJ, Graf M (2023) A functional logic for neurotransmitter corelease in the cholinergic forebrain pathway. Proc Natl Acad Sci U S A 120: e2218830120. https://doi.org/10.1073/pnas.2218830120
  118. Lenina O, Petrov K, Kovyazina I, Malomouzh A (2019) Enhancement of mouse diaphragm contractility in the presence of antagonists of GABAA and GABAB receptors. Exp Physiol 104: 1004–1010. https://doi.org/10.1113/EP087611
  119. Fedorov NS, Sibgatullina GV, Malomouzh AI (2024) Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters. Int J Mol Sci 25: 12510. https:// doi.org/10.3390/ijms252312510
  120. Malomouzh AI, Petrov KA, Nurullin LF, Nikolsky EE (2015) Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. J Neurochem 135: 1149–1160. https://doi.org/10.1111/jnc.13373
  121. Malomuzh AI, Nurullin LF, Nikolsky EE (2015) Immunohistochemical evidence of the presence of metabotropic receptors for γ-aminobutyric acid at the rat neuromuscular junctions. Dokl Biochem Biophys 463: 236–238. https://doi.org/10.1134/S1607672915040092
  122. Dietz N, Wagers S, Harkema SJ, D’Amico JM (2023) Intrathecal and Oral Baclofen Use in Adults with Spinal Cord Injury: A Systematic Review of Efficacy in Spasticity Reduction, Functional Changes, Dosing, and Adverse Events. Arch Phys Med Rehabil 104: 119–131. https://doi.org/10.1016/j.apmr.2022.05.011
  123. Meythaler JM, Guin-Renfroe S, Grabb P, Hadley MN (1999) Long-term continuously infused intrathecal baclofen for spastic-dystonic hypertonia in traumatic brain injury: 1-year experience. Arch Phys Med Rehabil 80: 13–9. https://doi.org/10.1016/s0003-9993(99)90301-5
  124. Schiess MC, Oh IJ, Stimming EF, Lucke J, Acosta F, Fisher S, Simpson RK (2011) Prospective 12-Month Study of Intrathecal Baclofen Therapy for Poststroke Spastic Upper and Lower Extremity Motor Control and Functional Improvement. Neuromodulation: Technology at the Neural Interface 14: 38–45. https://doi.org/10.1111/j.1525-1403.2010.00308.x
  125. Hasnat MJ, Rice JE (2015) Intrathecal baclofen for treating spasticity in children with cerebral palsy. Cochrane Database Syst Rev 2015: CD004552. https://doi.org/10.1002/14651858.CD004552.pub2
  126. Kent CN, Park C, Lindsley CW (2020) Classics in Chemical Neuroscience: Baclofen. ACS Chem Neurosci 11: 1740–1755. https://doi.org/10.1021/acschemneuro.0c00254
  127. Balaratnam MS, Stevenson VL (2022) Intrathecal baclofen pumps: What the neurologist needs to know. Pract Neurol 22(3): 241–246. https://doi.org/10.1136/practneurol-2021-003184
  128. Mizuno S, Takeda K, Maeshima S, Shigeru S (2018) Effect of oral baclofen on spasticity poststroke: Responders versus non-responders. Top Stroke Rehabil 25(6): 438–444. https://doi.org/10.1080/10749357.2018.1474422
  129. Ohno K, Engel AG, Brengman JM, Shen XM, Heidenreich F, Vincent A, Milone M, Tan E, Demirci M, Walsh P, Nakano S, Akiguchi I (2000) The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann Neurol 47: 162–70.
  130. Petrov K, Lenina O, Leroy J, Bernard V, Germain T, Truong C, Nurullin L, Sibgatullina G, Ohno K, Samigullin D, Krejci E (2025) An α7 nicotinic and GABA B receptor‐mediated pathway controls acetylcholine release in the tripartite neuromuscular junction. J Physiol 603: 507–527. https://doi.org/10.1113/JP287243
  131. Abdelmalki A, Merino D, Bonneau D, Bigard A, Guezennec C (1997) Administration of a GABA B Agonist Baclofen Before Running to Exhaustion in the Rat: Effects on Performance and on Some Indicators of Fatigue. Int J Sports Med 18: 75–78. https://doi.org/10.1055/s-2007-972598
  132. Kanehira T, Nakamura Y, Nakamura K, Horie K, Horie N, Furugori K, Sauchi Y, Yokogoshi H (2011) Relieving Occupational Fatigue by Consumption of a Beverage Containing Gamma-Amino Butyric Acid. J Nutr Sci Vitaminol (Tokyo) 57: 9–15. https://doi.org/10.3177/jnsv.57.9
  133. Feng S, Li T, Wei X, Zheng Y, Zhang Y, Li G, Zhao Y (2024) The Antioxidant and Anti-Fatigue Effects of Rare Ginsenosides and γ-Aminobutyric Acid in Fermented Ginseng and Germinated Brown Rice Puree. Int J Mol Sci 25: 10359. https://doi.org/10.3390/ijms251910359
  134. Oketch-Rabah HA, Madden EF, Roe AL, Betz JM (2021) United States Pharmacopeia (USP) Safety Review of Gamma-Aminobutyric Acid (GABA). Nutrients 13: 2742. https://doi.org/10.3390/nu13082742
  135. Sakashita M, Nakamura U, Horie N, Yokoyama Y, Kim M, Fujita S (2019) Oral Supplementation Using Gamma-Aminobutyric Acid and Whey Protein Improves Whole Body Fat-Free Mass in Men After Resistance Training. J Clin Med Res 11: 428–434. https://doi.org/10.14740/jocmr3817
  136. Ngo D-H, Vo TS (2019) An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 24: 2678. https://doi.org/10.3390/molecules24152678
  137. Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H (2006) Relaxation and immunity enhancement effects of γ‐Aminobutyric acid (GABA) administration in humans. BioFactors 26: 201–208. https://doi.org/10.1002/biof.5520260305
  138. Yamatsu A, Yamashita Y, Pandharipande T, Maru I, Kim M (2016) Effect of oral γ-aminobutyric acid (GABA) administration on sleep and its absorption in humans. Food Sci Biotechnol 25: 547–551. https://doi.org/10.1007/s10068-016-0076-9
  139. Anderson RA, Mitchell R (1986) Effects of β-aminobutyric acid receptor agonists on the secretion of growth hormone, luteinizing hormone, adrenocorticotrophic hormone and thyroid-stimulating hormone from the rat pituitary gland in vitro. J Endocrinol 108: 1–8. https://doi.org/10.1677/joe.0.1080001
  140. Riggs TR, Walker LM (1960) Growth hormone stimulation of amino acid transport into rat tissues in vivo. J Biol Chem 235: 3603–3607.
  141. Tujioka K, Okuyama S, Yokogoshi H, Fukaya Y, Hayase K, Horie K, Kim M (2007) Dietary γ-aminobutyric acid affects the brain protein synthesis rate in young rats. Amino Acids 32: 255–260. https://doi.org/10.1007/s00726-006-0358-2
  142. Horii M, Bumrungkit C, Yanaka N, Hawke TJ, Rebalka IA, Kumrungsee T (2025) Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Am J Physiol Cell Physiol 328: C967–C985. https://doi.org/10.1152/ajpcell.00963.2024
  143. Brunelli G, Spano P, Barlati S, Guarneri B, Barbon A, Bresciani R, Pizzi M (2005) Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc Natl Acad Sci U S A 102: 8752–8757. https://doi.org/10.1073/pnas.0500530102
  144. Pizzi M, Brunelli G, Barlati S, Spano P (2006) Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: A new paradigm in spinal cord injury repair. Curr Opin Neurobiol 16: 323–328. https://doi.org/10.1016/j.conb.2006.05.013

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of glutamatergic regulation of acetylcholine release in amphibian and mammalian neuromuscular synapses.

Download (407KB)
3. Fig. 2. Schematic representation of data on the role of neuropeptide N-acetylaspartylglutamate (NAAG) in the regulation of acetylcholine release processes in reptilian and mammalian neuromuscular synapses.

Download (379KB)
4. Fig. 3. Schematic of GABAergic regulation of acetylcholine release in amphibian and mammalian neuromuscular synapses.

Download (413KB)

Copyright (c) 2025 Russian Academy of Sciences