EXPERIMENTAL AND MATHEMATICAL MODELING OF THE IRON OXIDE NANOPARTICLE PULMONARY RETENTION AT LONG-TERM LOW-LEVEL INHALATION EXPOSURE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Airborne Fe2O3 nanoparticles (NPs) with the mean diameter of 14±4 nm produced at spark ablation from 99.99% pure iron rods were fed into a «nose-only» exposure tower for rats exposed for 4 h a day, 5 days a week during 3, 6 or 10 months at a mean concentration of 1.14±0.01 mg/m3. Nanoparticles filtered out of the air exhausted from the exposure tower proved insoluble in de-ionized water but gradually dissolved in the cell free fluid supernatant produced by broncho-alveolar lavage and in the sterile bovine blood serum. The Fe2O3 content in lungs was measured by the Electron Paramagnetic Resonance (EPR) spectroscopy. NP retention in lungs and in brain was visualized with the Transmission Electron Microscopy (TEM). It was found a relatively low but significant pulmonary accumulation of Fe2O3, gradually increasing with time but tending to attain an equilibrium level. Besides, TEM-images showed nanoparticles retention within alveolocytes and the myelin sheaths of brain fibers associated with their ultrastructural damage. A multi compartment system model was developed and identified which describes toxicokinetics of inhaled nanoparticles after their deposition in the lower airways as a process controlled by their (a) high ability to penetrate through the alveolar membrane; (b) active endocytosis; (c) in vivo dissolution. However, in this particular study, dissolution-depending mechanisms proved to be dominant due to the rather high solubility of the finest Fe2O3-NPs in biological milieux.

Авторлар туралы

M. Sutunkova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Хат алмасуға жауапты Автор.
Email: noemail@neicon.ru
Ресей

B. Katsnelson

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Ресей

L. Privalova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Ресей

V. Gurvich

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Ресей

L. Konysheva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Ресей

V. Shur

Ural Center for Shared Use «Modern Nanotechnologies», Ural Federal University

Email: noemail@neicon.ru
Ресей

E. Shishkina

Ural Center for Shared Use «Modern Nanotechnologies», Ural Federal University

Email: noemail@neicon.ru
Ресей

I. Minigalieva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Ресей

S. Solovyeva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Ресей

I. Zubarev

Ural Center for Shared Use «Modern Nanotechnologies», Ural Federal University

Email: noemail@neicon.ru
Ресей

Әдебиет тізімі

  1. Utembe W., Potgieter K., Stefaniak A.B., Gulumian M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 2015; 12: 11.
  2. Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.H., Shur V.Y., Beikin J.B. Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int. J. Mol. Sci. 2013; 14: 2449–2483.
  3. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int. J. Mol. Sci. 2014; 15: 12379-12406.
  4. Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y., et al. Attenuation of combined nickel (II) oxide and manganese (II,III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. International Journal of Molecular Sciences . 2015; 16 (9): 22555-225
  5. Katsnelson B.A., Privalova L.I., Kuzmin S.V., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S. Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: Are we defenseless against nanoparticles? Int. J. Occup. Environ. Health. 2010; 16: 508–5
  6. Katsnelson B.A., Minigalieva I.A., Panov V.G., Privalova L.I., Varaksin A. N., Gurvich V. B. et al. Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food and Chemical Toxicology. 2015; 86: 351-364
  7. ICRP. Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann ICRP 24.1994; 66: 1–482.
  8. Kolanjiyil A.V. Deposited nanomaterial mass transfer from lung airways to systemic regions. A thesis for MSc degree. Raleigh, NC. 2013.
  9. Creutzenberg, O. Toxic Effects of Various Modifications of a Nanoparticle Following Inhalation (Research Project F 2246). Dortmund, Berlin, Dresden; the Federal Institute for Occupational Safety and Health. 2013; 4
  10. Adamcakova-Dod A., Stebounova L.V., Kim, J.S., Vorrink S.U., Ault A.P., O’Shaughnessy P.T., Grassian V.H., Thorne P.S. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fib. Toxicol. 2014; 11: 15.
  11. Katsnelson B.A., Konysheva L.K., Privalova L.I., Morosova K.I. Development of a multicompartmental model of the kinetics of quartz dust in the pulmonary region of the lung during chronic inhalation exposure of rats. Brit. J. Ind. Med. 1992; 49: 172-181.
  12. Renwick L., Brown D., Clouter K., Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 2004; 61; 442-447.
  13. Stoeger T., Reinhard C., Takenaka Sh., Schroeppel A., Karg E., Ritter, B. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 2006; 114(3): 328-333.
  14. Sager T.M., Porter D.W., Robinson V.A., Lindsley W.G., Schwegler-Berry V.A., Castranova V. Improved method to disperse nanoparticles in vitro and in vivo investigation of toxicity. Nanotoxicol. 2007; 1: 118-129.
  15. Grassian V.H., O’Shaughnessy P.T., Adamcakova-Dodd A., Pettibone J.M., Thorne P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007; 115: 397–402.
  16. Neuberger M. Umweltepidemiologie und Toxikologie von Nanopartikeln, in: Gazsó, A., Greßler, S., Schiemer, F. (Eds), Nano–Chancen und Risiken aktueller Technologien. Springer, Wien – New York. 2007; 181-197.
  17. Warheit D.B., Reed K.L., Sayes C.M. A role fore surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicol. 2009; 3: 181–187.
  18. Liu J., Feng X., Wei L., Chen L., Song B., Shao L. The toxicology of ion-shedding zinc oxide nanoparticles. Crit. Rev. Toxicol. 2016; 46(4): 348-3
  19. Старикова С. К., Кацнельсон Б. А., Аронова Г. В., Шнайдман И. М. Участие полинуклеаров в альвеолярном фагоцитозе кварцевой пыли и его связь с биологической агрессивностью кварца. «Бюллетень экспер.биол.и медицины» .1970; 9: С. 113-116
  20. Привалова Л. И. Гигиеническое значение цитотоксического действия силикозоопасной пыли как фактора, контролирующего защитную реакцию самоочищения легких. Автореф. дис. канд. мед. наук. Свердловск: НИИ ГТ и ПЗ. 1979; 211 C.
  21. Привалова Л. И.Гигиенические аспекты неспецифического действия малорастворимых цитотоксических пылевых частиц. Автореф. дисс. докт. мед. наук. Свердловск: МНЦП и ОЗРПП. 1990; 389 C.
  22. Katsnelson B.A., Konyscheva L.K., Sharapova N.Ye., Privalova L.I. Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model. Occup. Environ. Med. 1994; 51: 173-180.
  23. Katsnelson B.A., Konysheva L.K., Privalova L.Y., Sharapova N.Y. Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: Further evidence of the key role of the cytotoxicity of quartz particles. Inhalat. Toxicol. 1997; 9: 703-715.
  24. Кацнельсон Б. А., Привалова Л. И., Алексеева О. Г., Ползик Е. В. Пневмокониозы: патогенез и биологическая профилактика. Екатеринбург: УрО РАН. 1995; 325
  25. Петин Л. М. К обоснованию предельно допустимой концентрации крем-неземсодержащих аэрозолей конденсации. Гиг, труда. 19№ С. 28—33.
  26. Подгайко Г. А., Кацнельсон Б. А., Лемясев М. Ф. , Соломина С. Н., Саитов В. А., Русяева Л. В. Новые данные к оценке силикозоопасности промышленных аэрозолей на основе коллоидного раствора кремниевой кислоты. В кн.: Домнин С. Г. и Кацнельсон Б. А. (ред.) «Профессиональные болезни пылевой этиологии. Выпуск 7». М.: НИИГ им. Эрисмана, 19С. 93—100.
  27. Katsnelson B.A., Privalova L.I., Kislitsina N.S., Podgaiko G.A. Correlation between cytotoxicity and fibrogenicity of silicosis-inducing dusts. Med. Lav. 1984; 75: 450-462.
  28. Ramahandran G. Assessing nanoparticle risk to human health. Elsevier, Amsterdam. 2016.
  29. Maulderly J.L, McCunney R.G. Particle overload in the rat lung and lung cancer. Implications for human risk assessment. Taylor & Francis, Philadelphia, USA. 1997.
  30. Bellmann B., Creutzenberg O., Dasenbrock C. Lung clearance and retention of toner, utilizing a tracer technique, during chronic inhalation exposure in rats. Fundam. Appl. Toxicol. 1991; 17: 300-313.
  31. Katsnelson B.A., Privalova L.I., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A. Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles. Cent. Eur. J. Occup. Environ. Med. 2011; 16: 47–63.
  32. Zhu M.T., Feng W.Y., Wang Y., Wang B., Wang M., Ouyang, H. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol. Sciences. 2009; 107(2): 342-351.
  33. Privalova L.I., Katsnelson B.A., Osipenko A.B., Yushkov B.H., Babushkina L.G. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity. Environ. Health Perspect. 1980; 356: 205-218.
  34. Privalova L.I., Katsnelson B.A., Yelnichnykh L.N. Some peculiarities of the pulmonary phagocytotic response, dust kinetics, and silicosis development during long term exposure of rats to high quartz levels. Brit. J. Ind. Med. 1987; 44: 228-2
  35. Privalova L.I., Katsnelson B.A., Sharapova N.Y., Kislitsina N.S. On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis. Med. Lav. 1995; 86: 511-5
  36. Katsnelson B.A., Privalova L.I. Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles. Environ. Health Perspect. 1984; 55: 313-325.
  37. Oberdörster G., Sharp Z., Atudore V., Elder A., Gelein R., Kreylin W. Translocation of inhaled ultrafine particle to the brainI. Inhal. Toxicol. 2004; 16(6/7): 437-445.
  38. Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J., Oberdörster G. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System. Environ. Health Perspect. 2006; 114(8): 1172-1178.
  39. Kao Y.-Y., Cheng T.-J., Yang D.-M., Liu P.-Sh. Demonstration of an olfactory bulb–brain translocation pathway for ZnO nanoparticles in rodent ells in vitro and in vivo. J. Molecular Neurosci. 2012; 48(2): 464-71.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Sutunkova M.P., Katsnelson B.A., Privalova L.I., Gurvich V.B., Konysheva L.K., Shur V.Y., Shishkina E.V., Minigalieva I.A., Solovyeva S.N., Zubarev I.V., 2017



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.