A METHOD FOR REGULARIZING A LINEAR EQUALIZER AND ITS STABILITY
- Авторлар: Zhang Z.1, Potekhin R.N1, Lyashev V.A1
-
Мекемелер:
- Moscow Institute of Physics and Technology (State University)
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 17-29
- Бөлім: Methods of Signal Processing
- URL: https://rjpbr.com/0555-2923/article/view/691885
- DOI: https://doi.org/10.7868/S3034583925020021
- ID: 691885
Дәйексөз келтіру
Аннотация
An extended description of a new regularization method based on optimization aimed at inverting the sample covariance matrix without requiring complex calculations is presented. The method is designed for linear receivers in multi-user communication systems with a large number of antennas and operates under conditions of a limited number of samples. The study shows that the considered probability distributions of noise do not affect the optimal value of the regularization factor. Simulation results confirm that the method outperforms traditional approaches and provides better conditioning of the sample covariance matrix, reducing the computational complexity of calculating the weight matrix of the linear equalizer in the uplink channel of the communication system.
Негізгі сөздер
Авторлар туралы
Z. Zhang
Moscow Institute of Physics and Technology (State University)
Email: zhibin@phystech.edu
R. Potekhin
Moscow Institute of Physics and Technology (State University)
Email: potekhin.rn@phystech.edu
V. Lyashev
Moscow Institute of Physics and Technology (State University)
Email: lyashev.va@mipt.ru
Әдебиет тізімі
- Шахнович И. Системы беспроводной связи 5G: телекоммуникационная парадигма, которая изменит мир // Электроника НТБ. 2015. № 7 (147). С. 48–55. https://www.electronics.ru/journal/article/4826
- Winters J.H. Optimum Combining in Digital Mobile Radio with Cochannel Interference // IEEE Trans. Veh. Technol. 1984. V. 33. № 3. P. 144–155. https://doi.org/10.1109/T-VT.1984.24001
- Ledoit O., Wolf M. Honey, I Shrunk the Sample Covariance Matrix // J. Portf. Manag. 2004. V. 30. № 4. P. 110–119. http://doi.org/10.3905/jpm.2004.110
- Zhang M., Rubio F., Palomar D.P., Mestre X. Finite-Sample Linear Filter Optimization in Wireless Communications and Financial Systems // IEEE Trans. Signal Process. 2013. V. 61. № 20. P. 5014–5025. https://doi.org/10.1109/TSP.2013.2277835
- Mestre X., Lagunas M.A. Finite Sample Size Effect on Minimum Variance Beamformers: Optimum Diagonal Loading Factor for Large Arrays // IEEE Trans. Signal Process. 2006. V. 54. № 1. P. 69–82. https://doi.org/10.1109/TSP.2005.861052
- Ledoit O., Wolf M. A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices // J. Multivariate Anal. 2004. V. 88. № 2. P. 365–411. https://doi.org/10.1016/S0047-259X(03)00096-4
- Stoica P., Li J., Zhu X., Guerci J.R. On Using a priori Knowledge in Space-Time Adaptive Processing // IEEE Trans. Signal Process. 2008. V. 56. № 6. P. 2598–2602. https://doi.org/10.1109/TSP.2007.914347
- Chen Y., Wiesel A., Eldar Y.C., Hero A.O. Shrinkage Algorithms for MMSE Covariance Estimation // IEEE Trans. Signal Process. 2010. V. 58. № 10. P. 5016–5029. https://doi.org/10.1109/TSP.2010.2053029
- Anderson T.W. An Introduction to Multivariate Statistical Analysis. New York: Wiley, 1958. V. 2.
- Чжан Ч., Ляшев В.А. Метод регуляризации в задачах оптимизации линейного эквалайзера // XIV Всероссийское совещание по проблемам управления (ВСПУ-2024). Москва, ИПУ РАН. 17–20 июня 2024 г. https://vspu2024.ipu.ru/proceedings/648.pdf
- Zhang Z., Potekhin R.N., Lyashev V.A. Regularized Linear MU-MIMO Equalizer and Its Robustness // Probl. Inf. Transm. 2025. V. 61. № 2 (to appear).
- Haykin S.S. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, 1996.
- Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными. М.: Мир, 1975.
- Householder A.S. The Theory of Matrices in Numerical Analysis. Mineola, NY: Dover, 2006.
- Ivanov A., Osinsky A., Lakontsev D., Yarotsky D. High Performance Interference Suppression in Multi-User Massive MIMO Detector // Proc. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp, Belgium. May 25–28, 2020. P. 1–5. https://doi.org/10.1109/VTC2020-Spring48590.2020.9128653
- Kay S.M. Fundamentals of Statistical Signal Processing. V. 1: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.
- Benaych-Georges F., Nadakuditi R.R. The Singular Values and Vectors of Low Rank Perturbations of Large Rectangular Random Matrices // J. Multivariate Anal. 2012. V. 111. P. 120–135. https://doi.org/10.1016/j.jmva.2012.04.019
- Bai Z.D., Silverstein J.W., Yin Y.Q. A Note on the Largest Eigenvalue of a Large Dimensional Sample Covariance Matrix // J. Multivariate Anal. 1988. V. 26. № 2. P. 166–168. https://doi.org/10.1016/0047-259X(88)90078-4
- Eldar Y.C., Chernoi J.S. A Pre-test Like Estimator Dominating the Least-Squares Method // J. Statist. Plann. Inference. 2008. V. 138. № 10. P. 3069–3085. https://doi.org/10.1016/j.jspi.2007.12.002
- Jaeckel S., Raschkowski L., B¨orner K., Thiele L. QuaDRiGa: A 3-D Multi-Cell Channel Model with Time Evolution for Enabling Virtual Field Trials // IEEE Trans. Antennas Propag. 2014. V. 62. № 6. P. 3242–3256. https://doi.org/10.1109/TAP.2014.2310220
Қосымша файлдар
