New methods of synthesis of annealed maleimides
- 作者: Panov A.A.1
- 
							隶属关系: 
							- Gause Institute of New Antibiotics
 
- 期: 卷 60, 编号 4 (2024)
- 页面: 403-417
- 栏目: Articles
- URL: https://rjpbr.com/0514-7492/article/view/672149
- DOI: https://doi.org/10.31857/S0514749224040014
- EDN: https://elibrary.ru/RZSIUO
- ID: 672149
如何引用文章
详细
This review covers the new synthetic methods for annealed maleimide derivatives, namely pyrrolo[3,4-b]-pyrrolo-4,6(1H,5H)-diones, 4H-thieno[2,3-c]-pyrrolo-4,6(5H)-diones, 4H-pyrrolo[3,4-d]thiazole-4,6(5H)-diones, 5H-pyrrolo-[3,4-b]pyridine-5,7(6H)-diones, 1H-pyrrolo-[3,4-c]pyridine-1,3(2H)-diones, and other related compounds. The publications for the last 10 years are considered, including the methods for de novo synthesis of the maleimide core and the ones which use N-substituted maleimide or halogen-substituted maleimide derivatives as the main precursor.
全文:
 
												
	                        作者简介
A. Panov
Gause Institute of New Antibiotics
							编辑信件的主要联系方式.
							Email: 7745243@mail.ru
				                	ORCID iD: 0000-0002-6654-4081
				                																			                												                	俄罗斯联邦, 							Moscow						
参考
- Cappuccino C., Catalano L., Marin F., Dushaq G., Raj G., Rasras M., Rezgui R., Zambianchi M., Melucci M., Naumov P., Maini L. Cryst. Growth Des. 2020, 20, 884–891. doi: 10.1021/acs.cgd.9b01281
- Cappuccino C., Canola S., Montanari G., Lopez S. G., Toffanin S., Melucci M., Negri F., Maini L. Cryst. Growth Des. 2019, 19, 2594–2603. doi: 10.1021/acs.cgd.8b01712
- Chen K., Xie H., Jiang K., Mao J. Chem. Phys. Lett. 2016, 657, 135–141. doi: 10.1016/j.cplett.2016.05.069
- Benz S., Lopez-Andarias J., Mareda J., Sakai N., Matile S. Angew. Chem., Int. Ed. 2017, 56, 812–815. doi: 10.1002/anie.201611019
- Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
- Imoto H., Fujii R., Naka K. Eur. J. Org. Chem. 2018, 837–843. doi: 10.1002/ejoc.201701479
- Danilenko V.N., Simonov AY., Lakatosh S. A., Kubbutat M. H.G., Totzke F., Schachtele C., Elizarov S. M., Bekker O. B., Printsevskaya S. S., Luzikov Y. N., Reznikova M. I., Shtil A. A., Preobrazhenskaya M. N. J. Med. Chem. 2008, 51, 7731–7736. doi: 10.1021/jm800758s
- Vandyshev D.Y., Shikhaliev K. S. Molecules. 2022, 27, 5268. doi: 10.3390/molecules27165268
- Chung C.-Y., Tseng C.-C., Li S.-M., Tsai S.-E., Lin H.-Y., Wong F. F. Molecules 2021, 26, 2907. doi: 10.3390/molecules26102907
- Panov A.A., Simonov A. Y., Lavrenov S. N., Lakatosh S. A., Trenin A. S. Chem. Heterocycl. Compd. 2018, 54, 103–113. doi: 10.1007/s10593–018–2240-z
- Volvoikar P., Torney P., Tetrahedron 2021, 82, 131756. doi: 10.1016/j.tet.2020.131756
- Bansal M., Upadhyay C., Poonam; Rathi S. K.B. RSC Med. Chem. 2021, 12, 1854–1867. doi: 10.1039/D1MD00244A
- Das S. New J. Chem. 2021, 45, 20519–20536. doi: 10.1039/D1NJ03924E
- Ershov O.V., Ershova A. I. Chem. Heterocycl. Compd. 2020, 56, 518–520. doi: 10.1007/s10593–020–02693–6
- Kavitha K., Praveena K. S.S., Ramarao E. V.V.S., Murthy N. Y.S., Pal S. Curr. Org. Chem. 2016, 20, 1955–2001. doi: 10.2174/1385272820666160530145014
- Mikie T., Okamoto K., Iwasaki Y., Koganezawa T., Sumiya M., Okamoto T., Osaka I. Chem. Mater. 2022, 34, 2717–2729. doi: 10.1021/acs.chemmater.1c04196
- Kobayashi K., Kunimura R., Kogen H. Molecules 2019, 24, 4230. doi: 10.3390/molecules24234230
- Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
- Khitrov M.D., Platonov D. N., Belyy A. Yu., Trainov K. P., Velmiskina J. A., Medvedev M. G., Salikov R. F., Tomilov Y. V. Dyes Pigm. 2022, 203, 110344. doi: 10.1016/j.dyepig.2022.110344
- Kumar A., Banerjee S., Roy P., Sondhi S. M., Sharma A. Bioorg. Med. Chem. Lett. 2017, 27, 501–504. doi: 10.1016/j.bmcl.2016.12.031
- Yin Z., Shi W., Wu X.-F. J. Org. Chem 2023, 88, 4975–4994. doi: 10.1021/acs.joc.2c00655
- Kang C., Xu J., Li X., Wang S., Jiang G., Ji F. J. Org. Chem. 2022, 87, 10390–10397. doi: 10.1021/acs.joc.2c00673
- Ram S., Mehara P., Kumar A., Sharma A. K., Chauhan A. S., Kumar A., Das P. Mol. Catal. 2022, 530, 112606. doi: 10.1016/j.mcat.2022.112606
- Wang Y., Zhou Y., Lei M., Hou J., Jin Q., Guo D., Wu W. Tetrahedron 2019, 75, 1180–1185. doi: 10.1016/j.tet.2019.01.023
- Fu L.-Y., Ying J., Wu X.-F. J. Org. Chem. 2019, 84, 12648–12655. doi: 10.1021/acs.joc.9b01890
- Panda B., Albano G. Catalysts 2021, 11, 1531. doi: 10.3390/catal11121531
- Zeng L., Li H., Tang S., Gao X., Deng Y., Zhang G., Pao C.-W., Chen J.-L., Lee J.-F., Lei A. ACS Catal. 2018, 8, 5448–5453. doi: 10.1021/acscatal.8b00683
- Barsu N., Kalsia D., Sundararaju B. Catal. Sci. Technol. 2018, 8, 5963–5969. doi: 10.1039/C8CY02060D
- Chen L.-P., Chen J.-F., Zhang Y.-J., He X.-Y., Han Y.-F., Xiao Y.-T., Lv G.-F., Lu X., Teng F., Sun Q., Li J.-H. Org. Chem. Front. 2021, 8, 6067–6073. doi: 10.1039/D1QO01147B
- Takacs A., Varga G. M., Kardos J., Kollar L. Tetrahedron 2017, 73, 2131–2138. doi: 10.1016/j.tet.2017.02.062
- Favaretto L., Zambianchi M., Lopez S. G., Mazzanti A., Zanardi C., Seeber R., Gentili D., Valle F., Benvenuti E., Muccini M., Ruani G., Mercuri F., Milita S., Liscio F., Cavallini M., Toffanin S., Melucci M. J. Mater. Chem. C. 2017, 5, 10320–10331. doi: 10.1039/C7TC03930A
- Ikai T., Kudo T., Nagaki M., Yamamoto T., Maeda K., Kanoh S. Polymer. 2014, 55, 2139–2145. doi: 10.1016/j.polymer.2014.03.021
- Maini L., Gallino F., Zambianchi M., Durso M., Gazzano M., Rubini K., Gentili D., Manet I., Muccini M., Toffanin S., Cavallini M., Melucci M. Chem. Commun. 2015, 51, 2033–2035. doi: 10.1039/C4CC09177A
- Punzi A., Coppi D. I., Matera S., Capozzi M. A.M., Operamolla A., Ragni R., Babudri F., Farinola G. M. Org. Lett. 2017, 19, 4754–4757. https://doi.org/10.1021/acs.orglett.7b02114
- Warnan J., Labban A. E., Cabanetos C., Hoke E. T., Shukla P. K., Risko C., Bredas J.-L., McGehee M.D., Beaujuge P. M. Chem. Mater. 2014, 26, 2299–2306. doi: 10.1021/cm500172w
- Shi W., Sun S., Hu Y., Gao T., Peng Y., Wu M., Guo H., Wang J., Tetrahedron Lett. 2015, 56, 3861–3863. doi: 10.1016/j.tetlet.2015.04.097
- Dagoneau D., Kolleth A., Lumbroso A., Tanriver G., Catak S., Sulzer-Mosse S., De Mesmaeker A. Helv. Chim. Acta 2019, 102, e19000. doi: 10.1002/hlca.201900031
- Katritzky A.R., Fan W.-Q. J. Heterocycl. Chem. 1988, 25, 901–906. doi: 10.1002/jhet.5570250338
- Kharitonova O.V., Solomentseva T. A., Golubtsov I. S., Mironov A. F. Russ. J. Org. Chem. 2014, 50, 45–47. doi: 10.1134/S1070428014010084
- Huang H.-M., Li Y.-J., Ye Q., Yu W.-B., Han L., Jia J.-H., Gao J.-R. J. Org. Chem. 2014, 79, 1084–1092. doi: 10.1021/jo402540j
- Koohgard M., Hosseinpour Z., Hosseini-Sarvari M. Tetrahedron 2021, 89, 132166. doi: 10.1016/j.tet.2021.132166
- Wang L., Ma T., Qiao M., Wu Q., Shi D., Xiao W. Synthesis 2019, 51, 522–529. doi: 10.1055/s-0037–1610907
- Fujiya A., Tanaka M., Yamaguchi E., Tada N., Itoh A. J. Org. Chem. 2016, 81, 7262–7270. doi: 10.1021/acs.joc.6b00439
- Firoozi S., Hosseini-Sarvari M., Koohgard M. Green Chem. 2018, 20, 5540–5549. doi: 10.1039/C8GC03297A
- Xu Y.-W., Wang J., Wang G., Zhen L. J. Org. Chem. 2021, 86, 91–102. doi: 10.1021/acs.joc.0c01567
- Nekkanti S., Kumar N. P., Sharma P., Kamal A., Nachtigall F. M., Forero-Doria O., Santos L. S., Shankaraiah N. RSC Adv. 2016, 6, 2671–2677. doi: 10.1039/C5RA24629F
- Wang Q., Yuan T., Liu Q., Xu Y., Xie G., Lv X., Ding S., Wang X., Li C. Chem. Commun. 2019, 55, 8398–8401. doi: 10.1039/C9CC04336E
- Zhang Q., Wang B., Ma H., Ablajan K. New J. Chem. 2019, 43, 17000–17003. doi: 10.1039/C9NJ03076J
- Zhou K., Bao M., Huang J., Kang Z., Xu X., Hu W., Qian Y. Org. Biomol. Chem. 2020, 18, 409–414. doi: 10.1039/C9OB02571E
- Zhu J.-N., Wang W.-K., Jin Z.-H., Wang Q.-K., Zhao S.-Y. Org. Lett. 2019, 21, 5046–5050. doi: 10.1021/acs.orglett.9b01641
- Lv K.-H., Zhao Q.-S., Zhao K.-H., Yang J.-M., Yan S.-J. J. Org. Chem. 2022, 87, 15301–15311. doi: 10.1021/acs.joc.2c01879
- Chupakhin E., Bakulina O., Dar’in D., Krasavin M. Tetrahedron Lett. 2021, 85, 153467. doi: 10.1016/j.tetlet.2021.153467
- Zhu J.-N., Chen L.-L., Zhou R.-X., Li B., Shao Z.-Y., Zhao S.-Y. Org. Lett. 2017, 19, 6044–6047. doi: 10.1021/acs.orglett.7b02670
- Li H., Zhang S., Feng X., Yu X., Yamamoto Y., Bao M. Org. Lett. 2019, 21, 8563–8567. doi: 10.1021/acs.orglett.9b03107
- Botes D.S., Khorasani S., Duminy W., Levendis D. C., Fernandes M. A., Cryst. Growth Des. 2020, 20, 291–299. doi: 10.1021/acs.cgd.9b01167
- Yang Z.-H., Tan H.-R., An Y.-L., Zhao Y.-W., Lin H.-P., Zhao S.-Y. Adv. Synth. Catal. 2018, 360, 173–179. doi: 10.1002/adsc.201700955
- Li X., Zhang X., Zhang F., Luo X., Luo H. Adv. Synth. Catal. 2022, 364, 1683–1688. doi: 10.1002/adsc.202200251
- Zhang Y., Jiang W., Bao X., Qiu Y., Yuan Y., Yang C., Huo C. Chin. J. Chem. 2021, 39, 3238–3244. doi: 10.1002/cjoc.202100401
- Lossouarn A., Renault K., Bailly L., Frisby A., Le Nahenec-Martel P., Renard P.-Y., Sabot C., Org. Biomol. Chem. 2020, 18, 3874–3887. doi: 10.1039/D0OB00403K
- Klyuchko S.V., Chumachenko S. A., Shablykin O. V., Brovarets V. S. Russ. J. Gen. Chem. 2021, 91, 348–356. doi: 10.1134/S1070363221030026
- Zhang X., Dhawan G., Muthengi A., Liu S., Wang W., Legrisa M., Zhang W. Green Chem. 2017, 19, 3851–3855. doi: 10.1039/C7GC01380A
- Zhao H., Wang T., Qing Z., Zhai H. Chem. Commun. 2020, 56, 5524–5527. doi: 10.1039/D0CC01582B
- Pati B.V., Sagara P. S., Ghosh A., Mohanty S. R., Ravikumar P. C. J. Org. Chem. 2021, 86, 6551–6565. doi: 10.1021/acs.joc.1c00367
- Shinde V. N., Rangan K., Kumar D., Kumar A. J. Org. Chem. 2021, 86, 2328–2338. doi: 10.1021/acs.joc.0c02467
- Li B., Guo C., Shen N., Zhang X., Fan X. Org. Chem. Front. 2020, 7, 3698–3704. doi: 10.1039/D0QO01109F
- Lavrard H., Rodriguez F., Delfourne E., Bioorg. Med. Chem. 2014, 22, 4961–4967. doi: 10.1016/j.bmc.2014.06.028
- Lavrard H., Salvetti B., Mathieu V., Rodriguez F., Kiss R. Delfourne E. ChemMedChem 2015, 10, 607–609. doi: 10.1002/cmdc.201500025
- Salvetti B., Lavrard H., Delfourne E., Tetrahedron Lett. 2014, 55, 6463–6464. doi: 10.1016/j.tetlet.2014.10.002
- He J., Bai Z.-Q., Yuan P.-F., Wu L.-Z., Liu Q. ACS Catal. 2021, 11, 446–455. doi: 10.1021/acscatal.0c05005
- Aknin K., Bontemps A., Farce A., Merlet E., Belmont P., Helissey P., Chavatte P., Sari M.-A., Giorgi-Renault S., Desbene-Finck S. J. Enzyme Inhib. Med. Chem. 2022, 37, 252–268. doi: 10.1080/14756366.2021.2001806
- Jiang Y.-H., Xiao M., Yan C.-G. RSC Adv. 2016, 6, 35609–35616. doi: 10.1039/C6RA03165J
- Xiao M., Jiang Y.-H., Yan C.-G. ChemistrySelect 2017, 2, 2803–2806. doi: 10.1002/slct.201602042
- Xiao M., Sun Q., Sun J., Yan C.-G. Eur. J. Org. Chem. 2017, 46, 6861–6866. doi: 10.1002/ejoc.201701356
- Jiang Y., Yan C. Chin. J. Chem. 2016, 34, 1255–1262. doi: 10.1002/cjoc.201600504
- Du F., Li S.-J., Jiang K., Zeng R., Pan X.-C., Lan Y., Chen Y.-C., Wei Y., Angew. Chem., Int. Ed. 2020, 59, 23755–23762. doi: 10.1002/anie.202010752
- Zhao J., Chen M., Wu M., Shi L., Li H. Asian J. Org. Chem. 2022, 11, e202200042. doi: 10.1002/ajoc.202200042
- Singh B., Bhatia R., Pani B., Gupta D. J. Mol. Struct. 2020, 1200, 127084. doi: 10.1016/j.molstruc.2019.127084
- Zhang Z., Wang S., Hu C., Ma N., Zhang G., Liu Q. Tetrahedron 2018, 74, 7472–7479. doi: 10.1016/j.tet.2018.11.023
- Vepreva A., Kantin G., Krasavin M., Dar’in D. Synthesis 2022, 54, 5128–5138. doi: 10.1055/s-0037–1610790
- Inyutina A., Kantin G., Dar’in D., Krasavin M. J. Org. Chem. 2021, 86, 13673–13683. doi: 10.1021/acs.joc.1c01710
- Laha D., Meher K. B., Bankar O. S., Bhat R. G. Asian J. Org. Chem. 2022, 11, e202200062. doi: 10.1002/ajoc.202200062
- Inyutina A., Dar’in D., Kantina G., Krasavin M. Org. Biomol. Chem. 2021, 19, 5068–5071. doi: 10.1039/D1OB00773D
- Brenet S., Baptiste B., Philouze C., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 1041–1045. doi: 10.1002/ejoc.201201525
- Brenet S., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 8094–8096. doi: 10.1002/ejoc.201301329
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted##

































