Lasing from molecular nitrogen ions in laser plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We presented the results of study of lasing from molecular nitrogen ions in laser plasma produced by femtosecond radiation pulse. It is shown that the maximum intensities at the wavelengths of 391.4 and 427.8 nm are observed at nitrogen pressure of 30 and 500 mbar respectively. The radiation divergence is tens mrad and is close to geometric. When the focal length of lens changes from 15 to 40 cm the pulse duration at wavelength of 391.4 nm varies from 1.83 to 3.5 ps.

全文:

受限制的访问

作者简介

V. Losev

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: losev@ogl.hcei.tsc.ru
俄罗斯联邦, Tomsk

I. Zyatikov

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Email: losev@ogl.hcei.tsc.ru
俄罗斯联邦, Tomsk

参考

  1. Yao J., Zeng B., Xu H. et al. // Phys. Rev. A. 2011. V. 84. No. 5. Art. No. 051802.
  2. Wang T.J., Daigle J.F., Ju J. et al. // Phys. Rev. A. 2013. V. 88. No. 5. Art. No. 053429.
  3. Liu Y., Ding P., Ibrakovic N. et al. // Phys. Rev. Lett. 2017. V. 119. No. 20. Art. No. 203205.
  4. Li H., Zang H., Su Y. et al. // J. Optics. 2017. V. 19. No. 12. Art. No. 124006.
  5. Chin S.L., Xu H., Cheng Y. et al. // Chin. Opt. Lett. 2013. V. 11. No. 1. Art. No. 013201.
  6. Лубенко Д.М., Иванов Н.Г., Алексеев С.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 934; Lubenko D.M., Ivanov N.G., Alekseev S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 766.
  7. Пучикин А.В., Панченко Ю.Н., Лосев В.Ф., Бобровников С.М. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 329; Puchikin A.V., Panchenko Y.N., Losev V.F., Bobrovnikov S.M. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 273.
  8. Лубенко Д.М., Сандабкин Е.А., Лосев В.Ф. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 936; Lubenko D.M., Sandabkin E.A., Losev V.F. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 780.
  9. Алексеев С.В., Иванов М.В., Иванов Н.Г., Лосев В.Ф. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 320; Alekseev S.V., Ivanov M.V., Ivanov N.G., Losev V.F. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 265.
  10. Yao J., Chu W., Liu Z. et al. // Appl. Phys. B. 2018. V. 124. Art. No. 73.
  11. Fu Y., Xiong H., Xu H. et al. // Optics Lett. 2009. V. 34. No. 23. P. 3752.
  12. Xu H., Cheng Y., Chin S.L., Sun H.B. // Laser Photonics Rev. 2015. V. 9. No. 3. P. 275.
  13. Polynkin P., Cheng Y. Air lasing. Springer, 2018. 143 p.
  14. Ni J., Chu W., Jing C. et al. // Opt. Express. 2013. V. 21. No. 7. P. 8746.
  15. Xu H., Lötstedt E., Iwasaki A., Yamanouchi K. // Nature Commun. 2015. V. 6. Art. No. 8347.
  16. Liu Y., Brelet Y., Point G. et al. // Opt. Express. 2013. V. 21. No. 19. P. 22791.
  17. Ivanov N.G., Zyatikov I.A., Losev V.F., Prokop’ev V.E. // Opt. Commun. 2020. V. 456. Art. No. 124573.
  18. Zyatikov I.A., Losev V.F., Lubenko D.M., Sandabkin E.A. // Opt. Lett. 2020. V. 45. No. 23. P. 6518.
  19. Зятиков И.А., Лосев В.Ф., Прокопьев В.Е. и др. // Изв. вузов. Физика 2021. Т. 64. № 3(760). C. 161; Zyatikov I.A., Losev V.F., Prokopiev V.E. et al. // Russ. Phys. J. 2021. V. 64. No. 3. P. 553.
  20. Зятиков И.А., Иванов Н.Г., Лосев В.Ф., Прокопьев В.Е. // Квант. электрон. 2019. Т. 49. № 10. С. 947; Zyatikov I.A., Ivanov N.G., Losev V.F., Prokop’ev V.E. // Quantum Electron. 2019. V. 49. No. 10. P. 947.
  21. Kartashov D., Möhring J., Andriukaitis G. et al. // Proc. CLEO-2012. OSA, 2012. Art. No. QTh4E.6.
  22. Zhang H., Jing C., Li G. et al. // Phys. Rev. A. 2013. V. 88. No. 6. Art. No. 063417.
  23. Yao J., Li G., Jing C. et al. // New J. Phys. 2013. V. 15. No. 2. Art. No. 023046.
  24. Xie H., Zeng B., Li G. et al. // Phys. Rev. A. 2014. V. 90. No. 4. Art. No. 042504.
  25. Liu Y., Ding P., Lambert G. et al. // Phys. Rev. Lett. 2015. V. 115. No. 13. Art. No. 133203.
  26. Zhong X., Miao Z., Zhang L. et al. // Phys. Rev. A. 2018. V. 97. No. 3. Art. No. 033409.
  27. Li G., Jing C., Zeng B. et al. // Phys. Rev. A. 2014. V. 89. No. 3. Art. No. 033833.
  28. Зятиков И.А., Лосев В.Ф. // Опт. и спектроск. 2022. Т. 130. № 4. С. 511; Zyatikov I. A., Losev V. F. // Opt. Spectrosc. 2022. V. 130. No. 2. P. 130.
  29. Chu W., Li G., Xie H. et al. // Laser Phys. Lett. 2014. V. 11. No. 1. Art. No. 015301.
  30. Point G., Liu Y., Brelet Y. et al. // Optics Lett. 2014. V. 39. No. 7. P. 1725.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependences of generation intensity at wavelengths 391.4 nm (a) and 427.8 nm (b) at different nitrogen pressure and optimal pump energy values of 6 mJ on pure nitrogen in the laser chamber (1) and air (2). F = 30 cm

下载 (126KB)
3. Fig. 2. Experimentally measured generation pulse durations at F = 15 (a), 30 (b) and 40 cm (c). P = 30 mbar. E = 6 mJ. The zero point corresponds to the arrival time of the pump pulse

下载 (383KB)
4. Fig. 3. Dependence of the experimental (1) and estimated (2) divergence of radiation on the focal length of the lens. The inset shows the beam profile at a wavelength of 391.4 nm in the far field. E = 8 mJ, P = 30 mbar

下载 (182KB)

版权所有 © Russian Academy of Sciences, 2024