Lasing from molecular nitrogen ions in laser plasma

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We presented the results of study of lasing from molecular nitrogen ions in laser plasma produced by femtosecond radiation pulse. It is shown that the maximum intensities at the wavelengths of 391.4 and 427.8 nm are observed at nitrogen pressure of 30 and 500 mbar respectively. The radiation divergence is tens mrad and is close to geometric. When the focal length of lens changes from 15 to 40 cm the pulse duration at wavelength of 391.4 nm varies from 1.83 to 3.5 ps.

Texto integral

Acesso é fechado

Sobre autores

V. Losev

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: losev@ogl.hcei.tsc.ru
Rússia, Tomsk

I. Zyatikov

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Email: losev@ogl.hcei.tsc.ru
Rússia, Tomsk

Bibliografia

  1. Yao J., Zeng B., Xu H. et al. // Phys. Rev. A. 2011. V. 84. No. 5. Art. No. 051802.
  2. Wang T.J., Daigle J.F., Ju J. et al. // Phys. Rev. A. 2013. V. 88. No. 5. Art. No. 053429.
  3. Liu Y., Ding P., Ibrakovic N. et al. // Phys. Rev. Lett. 2017. V. 119. No. 20. Art. No. 203205.
  4. Li H., Zang H., Su Y. et al. // J. Optics. 2017. V. 19. No. 12. Art. No. 124006.
  5. Chin S.L., Xu H., Cheng Y. et al. // Chin. Opt. Lett. 2013. V. 11. No. 1. Art. No. 013201.
  6. Лубенко Д.М., Иванов Н.Г., Алексеев С.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 934; Lubenko D.M., Ivanov N.G., Alekseev S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 766.
  7. Пучикин А.В., Панченко Ю.Н., Лосев В.Ф., Бобровников С.М. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 329; Puchikin A.V., Panchenko Y.N., Losev V.F., Bobrovnikov S.M. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 273.
  8. Лубенко Д.М., Сандабкин Е.А., Лосев В.Ф. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 936; Lubenko D.M., Sandabkin E.A., Losev V.F. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 780.
  9. Алексеев С.В., Иванов М.В., Иванов Н.Г., Лосев В.Ф. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 320; Alekseev S.V., Ivanov M.V., Ivanov N.G., Losev V.F. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 265.
  10. Yao J., Chu W., Liu Z. et al. // Appl. Phys. B. 2018. V. 124. Art. No. 73.
  11. Fu Y., Xiong H., Xu H. et al. // Optics Lett. 2009. V. 34. No. 23. P. 3752.
  12. Xu H., Cheng Y., Chin S.L., Sun H.B. // Laser Photonics Rev. 2015. V. 9. No. 3. P. 275.
  13. Polynkin P., Cheng Y. Air lasing. Springer, 2018. 143 p.
  14. Ni J., Chu W., Jing C. et al. // Opt. Express. 2013. V. 21. No. 7. P. 8746.
  15. Xu H., Lötstedt E., Iwasaki A., Yamanouchi K. // Nature Commun. 2015. V. 6. Art. No. 8347.
  16. Liu Y., Brelet Y., Point G. et al. // Opt. Express. 2013. V. 21. No. 19. P. 22791.
  17. Ivanov N.G., Zyatikov I.A., Losev V.F., Prokop’ev V.E. // Opt. Commun. 2020. V. 456. Art. No. 124573.
  18. Zyatikov I.A., Losev V.F., Lubenko D.M., Sandabkin E.A. // Opt. Lett. 2020. V. 45. No. 23. P. 6518.
  19. Зятиков И.А., Лосев В.Ф., Прокопьев В.Е. и др. // Изв. вузов. Физика 2021. Т. 64. № 3(760). C. 161; Zyatikov I.A., Losev V.F., Prokopiev V.E. et al. // Russ. Phys. J. 2021. V. 64. No. 3. P. 553.
  20. Зятиков И.А., Иванов Н.Г., Лосев В.Ф., Прокопьев В.Е. // Квант. электрон. 2019. Т. 49. № 10. С. 947; Zyatikov I.A., Ivanov N.G., Losev V.F., Prokop’ev V.E. // Quantum Electron. 2019. V. 49. No. 10. P. 947.
  21. Kartashov D., Möhring J., Andriukaitis G. et al. // Proc. CLEO-2012. OSA, 2012. Art. No. QTh4E.6.
  22. Zhang H., Jing C., Li G. et al. // Phys. Rev. A. 2013. V. 88. No. 6. Art. No. 063417.
  23. Yao J., Li G., Jing C. et al. // New J. Phys. 2013. V. 15. No. 2. Art. No. 023046.
  24. Xie H., Zeng B., Li G. et al. // Phys. Rev. A. 2014. V. 90. No. 4. Art. No. 042504.
  25. Liu Y., Ding P., Lambert G. et al. // Phys. Rev. Lett. 2015. V. 115. No. 13. Art. No. 133203.
  26. Zhong X., Miao Z., Zhang L. et al. // Phys. Rev. A. 2018. V. 97. No. 3. Art. No. 033409.
  27. Li G., Jing C., Zeng B. et al. // Phys. Rev. A. 2014. V. 89. No. 3. Art. No. 033833.
  28. Зятиков И.А., Лосев В.Ф. // Опт. и спектроск. 2022. Т. 130. № 4. С. 511; Zyatikov I. A., Losev V. F. // Opt. Spectrosc. 2022. V. 130. No. 2. P. 130.
  29. Chu W., Li G., Xie H. et al. // Laser Phys. Lett. 2014. V. 11. No. 1. Art. No. 015301.
  30. Point G., Liu Y., Brelet Y. et al. // Optics Lett. 2014. V. 39. No. 7. P. 1725.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependences of generation intensity at wavelengths 391.4 nm (a) and 427.8 nm (b) at different nitrogen pressure and optimal pump energy values of 6 mJ on pure nitrogen in the laser chamber (1) and air (2). F = 30 cm

Baixar (126KB)
3. Fig. 2. Experimentally measured generation pulse durations at F = 15 (a), 30 (b) and 40 cm (c). P = 30 mbar. E = 6 mJ. The zero point corresponds to the arrival time of the pump pulse

Baixar (383KB)
4. Fig. 3. Dependence of the experimental (1) and estimated (2) divergence of radiation on the focal length of the lens. The inset shows the beam profile at a wavelength of 391.4 nm in the far field. E = 8 mJ, P = 30 mbar

Baixar (182KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024