Ferroelectric ceramics based on Bi4Ti3O12 designed for extreme conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A comparative study of ceramics based on high-temperature ferroelectric Bi4Ti3O12, made by using three different sintering methodswas carried out. The dependences of the microstructure, dielectric and piezoelectric properties of ceramics on the sintering method are established. It is shown that ceramics sintered by hot pressing have an optimal combination of functional characteristics.

作者简介

М. Marakhovskiy

Institute of High Technologies and Piezotechnics, Southern Federal University

编辑信件的主要联系方式.
Email: marmisha@mail.ru
Russia, 344090, Rostov-on-Don

М. Talanov

Institute of Physics, Southern Federal University

Email: marmisha@mail.ru
Russia, 344090, Rostov-on-Don

А. Panich

Institute of High Technologies and Piezotechnics, Southern Federal University

Email: marmisha@mail.ru
Russia, 344090, Rostov-on-Don

参考

  1. Dorrian J.F., Newnham R.E., Smith D.K. et al. // Ferroelectrics. 1972. V. 3. P. 17.
  2. Hervoches C.H., Lightfoot P. // Chem. Mater. 1999. V. 11. P. 3359.
  3. Rae A.D., Thompson J.G., Withers R.L. et al. // Acta Cryst. 1990. V. B46. P. 474.
  4. Ломанова Н.А. // ЖНХ. 2022. Т. 67. № 6. С. 665; Lomanova N.A. // Russ. J. Inorg. Chem. 2022. V. 67. P. 741.
  5. Shirokov V.B., Talanov M.V. // Acta Cryst. 2019. V. B75. P. 978.
  6. Park B.H., Kang B.S., Bu S.D. et al. // Nature. 1999. V. 401. P. 682.
  7. Kalinkin A.N., Kozhbakhteev E.M., Polyakov A.E., Skorikov V.M. // Inorg. Mater. 2013. V. 49. P. 1031.
  8. Slavov S.S., Soreto Teixeira S., Graca M.P.F. et al. // Int. J. Appl. Glass Sci. 2019. V. 10. P. 202.
  9. Searfass C.T., Pheil C., Sinding K. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016. V. 63. P. 139.
  10. Cheng T., Ma Q., Gao H. et al. // Mater. Today Chem. 2022. V. 23. Art. No. 100750.
  11. Megriche A., Lebrun L., Troccaz M. // Sens. Actuators. A. 1999. V. 78. P. 88.
  12. Jiang A.Q., Hu Z.X., Zhang L.D. // Appl. Phys. Lett. 1999. V. 74. P. 114.
  13. Jovalekic C., Pavlovic M., Osmokrovic P. et al. // Appl. Phys. Lett. 1998. V. 72. P. 1051.
  14. Xie X., Zhou Z., Liang R. et al. // Adv. Electron. Mater. 2022. V. 8. Art. No. 2101266.
  15. Shulman H. S., Damjanovic D., Setter N. // J. Amer. Ceram. Soc. 2000. V. 83. P. 528.
  16. Мараховский М.А., Панич А.А., Таланов М.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1667; Marakhovsky M.A., Panich A.A., Talanov M.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1419.
  17. Marakhovsky M.A., Panich A.A., Talanov M.V. et al. // Ferroelectrics. 2020. V. 560. No. 1. P. 1.
  18. Мараховский М.А., Панич А.А., Мараховский В.А. // Фунд. пробл. радиоэлектрон. приборостр. 2018. Т. 18. № 2. С. 430.
  19. Мараховский М.А., Панич А.А. // Изв. ЮФУ. Техн. науки. 2017. Т. 191. № 6. С. 242.
  20. Marakhovsky M.A., Panich A.A., Talanov M.V. et al. // Ferroelectrics. 2021. V. 575. No. 1. P. 43.
  21. Kan Y., Wang P., Xu W.T. et al. // J. Amer. Ceram. Soc. 2005. V. 88. No. 6. P. 1631.
  22. Вусевкер Ю.А., Файнридер Д.Э., Панич А.Е. и др. Пьезоэлектрический керамический материал. Патент РФ № 2139840, кл. C04B 35/00. 1999.
  23. Esquivel-Elizondo J.R., Hinojosa B.B., Nino J.C.J. // Chem. Mater. 2011. V. 23. No. 22. P. 4965.
  24. Kargin Yu.F., Ivicheva S.N., Volkov V.V. // Russ. J. Inorg. Chem. 2015. V. 60. No. 5. P. 619.
  25. Patri T., Rao T.D., Chandra Sekhar K.S.K.R. et al. // Phys. Stat. Sol. B. 2022. Art. No. 2200223.
  26. Long C., Fan H., Ren W. et al. // J. Europ. Ceram. Soc. 2019. V. 39. P. 4103.
  27. Xie X., Wang T., Zhou Z. et al. // J. Europ. Ceram. Soc. 2019. V. 39. P. 957.
  28. Chen Y., Xie S., Wang H. et al. // J. Alloys Compounds. 2017. V. 696. P. 746.
  29. Bush A.A., Talanov M.V., Stash A.I. et al. // Cryst. Growth Des. 2020. V. 20. No. 2. P. 824.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (287KB)
3.

下载 (1MB)
4.

下载 (151KB)
5.

下载 (203KB)

版权所有 © М.А. Мараховский, М.В. Таланов, А.А. Панич, 2023