High-harmonic large-orbit terahertz gyrotrons for physical applications

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An overview is given of works on two experimental installations that implement large-orbit gyrotrons (LOG) operating in the sub-terahertz frequency range at high harmonics of the electronic cyclotron frequency. At the installation of a pulsed LOG (80–100 keV/0.7–1.0 A), a radiation source with a frequency of 1 THz with a kilowatt output power level is being developed, which is planned to be used in plasma applications. A continuous subterahertz LOG (30 keV/0.7 A) is being created as a prototype of a universal multi-frequency source for spectroscopic applications. Complex electrodynamic systems are also described, designed to increase the selectivity and efficiency of excitation of high cyclotron harmonics in these devices, as well as to ensure the tuning of the generation frequency.

作者简介

I. Bandurkin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

Yu. Kalynov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

I. Osharin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Savilov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

E. Semenov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

D. Shchegolkov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

参考

  1. Jory H. Research and development technical report ecom-01873-f. Technical Report ECOM-01873-F. Palo Alto: Varian Associates, 1968.
  2. McDermott D.B., Luhmann N.C. Jr., Kupiszewski A., Jory H.R. // Phys. Fluids. 1983. V. 26. P. 1936.
  3. Lawson W., Destler W.W., Striffler C.D. // IEEE Trans. Plasma Sci. 1985. V. PS-13. P. 444.
  4. Bratman V.L., Fedotov A.E., Kalynov Y.K. et al. // IEEE Trans. Plasma Sci. 1999. V. 27. P. 456.
  5. Bratman V.L., Kalynov Yu.K., Manuilov V.N. // Phys. Rev. Lett. 2009. V. 102. Art. No. 245101.
  6. Bandurkin I.V., Bratman V.L., Kalynov Yu.K. et al. // IEEE Trans. Electron Devices. 2018. V. 65. P. 2287.
  7. Kalynov Yu.K., Manuilov V.N., Fiks A.Sh., Zavolsky N.A. // Appl. Phys. Lett. 2019. V. 114. Art. No. 213502.
  8. Shalashov A., Gospodchikov E. // IEEE Trans. Antennas Propag. 2016. V. 64. P. 3960.
  9. Abramov I.S., Gospodchikov E.D., Shalashov A.G. // Phys. Rev. Appl. 2018. V. 10. Art. No. 034065.
  10. Bandurkin I.V., Kalynov Y.K., Makhalov P.B. et al. // IEEE Trans. Electron Devices. 2017. V. 64. P. 300.
  11. Kalynov Yu.K., Osharin I.V., Savilov A.V. // Phys. Plasm. 2016. V. 23. Art. No. 053116.
  12. Bandurkin I.V., Fokin A.P., Glyavin M.Y. et al. // IEEE Electron Device Lett. 2020. V. 41. P. 1412.
  13. Bandurkin I.V., Kalynova G.I., Kalynov Yu.K. et al. // IEEE Trans. Electron Devices. 2021. V. 68. P. 347.
  14. Kalynov Y.K., Osharin I.V., Savilov A.V. // IEEE Trans. Electron Devices. 2020. V. 67. P. 3795.
  15. Bandurkin I.V., Kalynov Y. K., Osharin I.V., Savilov A.V. // Phys. Plasmas. 2016. V. 23. Art. No. 013113.
  16. Guznov Yu.M., Kalynov Y.K., Osharin I.V., Savilov A.V. // IEEE Trans. Electron Devices. 2021. V. 69. P. 325.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (273KB)
3.

下载 (1020KB)
4.

下载 (1MB)
5.

下载 (525KB)

版权所有 © И.В. Бандуркин, Ю.К. Калынов, И.В. Ошарин, А.В. Савилов, Е.С. Семенов, Д.Ю. Щегольков, 2023