Simulation of photon transport in a fractal waveguide considered for 3–5 order nonlinearity
- Autores: Trofimov R.R.1, Konobeeva N.N.1
- 
							Afiliações: 
							- Volgograd State University
 
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 488–492
- Seção: Articles
- URL: https://rjpbr.com/0367-6765/article/view/686034
- DOI: https://doi.org/10.31857/S0367676525030269
- EDN: https://elibrary.ru/FTYHMD
- ID: 686034
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We study the features of quantum transport of photons in a waveguide lattice with a fractal structure of two types — a triangle and a Sierpinski square, formed by hexagons. Based on the discrete Schrodinger equation, considering 3–5 order nonlinearity, the evolution of the system is analyzed. The influence of fractal geometry on quantum transport of photons in a waveguide lattice is revealed.
			                Palavras-chave
Sobre autores
R. Trofimov
Volgograd State University
														Email: yana_nn@volsu.ru
				                					                																			                								 				                								Volgograd, 400062 Russia						
N. Konobeeva
Volgograd State UniversityVolgograd, 400062 Russia
Bibliografia
- Семенова Е.М., Иванов Д.В., Ляхова М.Б. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1245 // Semenova E.M., Ivanov D.V., Lyahova M.B. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 955.
- Иванов Д.В., Антонов А.С., Кузьмин Н.Б. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1389; Ivanov D.V., Antonov A.S., Kuz’min N.B. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1425.
- Vu C.C., Truong T.T.N., Kim J. // Materials Today. Physics. 2022. V. 27. P. 100795.
- Perets H.B., Lahini Y., Pozzi F. et al. // Phys. Rev. Lett. 2008. V. 100. P. 170506.
- Ghadiyali M., Chacko S. // ArXiv: 1904.11862. 2019.
- Westerhout T., van Veen E., Katsnelson M.I. et al. // Phys. Rev. B. 2018. V. 97. P. 2054348.
- Pedersen T.G. // Phys. Rev. B. 2020. V. 101. P. 235427.
- Hanafi H., Menz P., Denz C. // In: Nonlinear Optics. Washington, 2021. P. NM2A.6.
- Biesenthal T., Maczewsky L., Yang Z. et al. // Science. 2022. V. 376. No. 6597. P. 1114.
- Li M., Li C., Yan L. et al. // Light. Sci. Appl. 2023. V. 12. Art. No. 262.
- ben-Avraham D., Havlin S. Diffusion and reactions in fractals and disordered systems. Cambridge: Cambridge Univ. Press, 2000.
- Sokolov I.M. // J. Phys. A. Math. Teor. 2016. V. 49. P. 095003.
- Reis F.D.A., Voller V.R. // Phys. Rev. E. 2019. V. 99. P. 042111.
- Sibatov R.T., Golmnkhaneh A.Kh., Meftakhutdinov R.M. et al. // Fractal Fract. 2022. V. 6. P. 115.
- Xu X.-Y., Wang X.-W., Chen D.-Y. et al. // Nature Photonics. 2021. V. 15. P. 703.
- Bagnato V.S., Frantzeskakis D.J., Kevrekidis P.G. et al. // Roman. Rep. Phys. 2015. V. 67. P. 5.
- Кандидов В.П., Чекалин С.В., Компанец В.О и др. // Сб. тезисов XI международного симпозиума по фотонному эхо и когерентной спектроскопии «ФЭКС-2017». (Светлогорск, 2017). С. 16.
- Tang H., Lin X.-F., Fen Z. et al. // Sci. Advances. 2018. V. 4. No. 5. Art. No. eaat3174.
- Eisenberg H.S., Silberberg Y., Morandotti R. et al. // Phys. Rev. Lett. 1998. V. 81. No. 16. P. 3383.
- Ashcroft N.W., Mermin N.D. Solid State Physics. Belmont: Brooks Cole, 1976.
- Corem N., Ditkowski A. // J. Sci. Comput. 2012. V. 53. No. 1. P. 35.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
