Measurement of nematic liquid crystals anchoring energy under crossed magnetic and electric fields
- Autores: Khazimullin M.V.1, Lebedev Y.A.1, Khoroshavin K.S.1, Makarov D.V.2
- 
							Afiliações: 
							- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Perm State University
 
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 442–446
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://rjpbr.com/0367-6765/article/view/686026
- DOI: https://doi.org/10.31857/S0367676525030181
- EDN: https://elibrary.ru/GCAZUU
- ID: 686026
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A method for determining the anchoring energy of nematic liquid crystals to a substrate based on the measurement of the Fredericksz threshold in crossed destabilizing magnetic and electric fields is proposed.
			                Palavras-chave
Sobre autores
M. Khazimullin
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
														Email: maximhk@gmail.com
				                					                																			                								 				                								Ufa, 450075 Russia						
Yu. Lebedev
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
Khoroshavin Khoroshavin
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
D. Makarov
Perm State UniversityPerm, 614068 Russia
Bibliografia
- De Gennes P.-G., Prost J. The physics of liquid crystals. Oxford Universal Press, 1993. 596 p.
- Coles H., Morris S. // Nature Photon. 2010. V. 4. P. 676.
- Wee D., Hwang S.H., Song Y.S., Youn J.R. // Soft Matter. 2016. V. 12. P. 3868.
- Humar M., Ravnik M., Pajk S., Musevic I. // Nature Photon. 2009. V. 3. P. 595.
- Huh J.-W., Yu B.-H., Teo J. et al. // Mol. Cryst. Liq. Cryst. 2017. V. 644. P. 20.
- Комяк К.Г., Кабанова О.С., Рушнова И.И. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 1. С. 10; Komyak K.G., Kabanova O.S., Rushnova I.I. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1496.
- Yang Y.Q., Forbes A., Cao L.C. // Opto-Electron. Sci. 2023. V. 2. Art. No. 230026.
- Shah R., Abbott N. // Science. 2001. V. 293. P. 1296.
- Sutarlie L., Lim J.Y., Yang K.L. // Analyt. Chem. 2011. V. 83. P. 5253.
- Luk Y.-Y., Abbott N. // Science. 2003. V. 301. P. 623.
- Tan H., Yang S.G., Shen G. et al. // Angew. Chem. Int. Ed. Engl. 2010. V. 49. P. 8608.
- Skarabot M., Ravnik M., Zumer S. et al. // Phys. Rev. E. 2008.V. 77. Art. No. 031705.
- Riviere D., Levy Y., Guyon E. // J. Phys. Lett. 1979. V. 40. P. 215.
- Alkafeef S.F., Algharaib M.R., Alajmi A.F. // J. Colloid Interface Sci. 2006. V. 298. P. 13.
- Yokoyama H., van Sprang H.A. // J. Appl. Phys. 1985. V. 57. P. 4520.
- Nastishin Yu.A., Polak R.D., Shiyanovskii S.V., Lavrentovich O.D. // Appl. Phys. Lett. V. 75. No. 2. P. 202.
- Naemura S. // Appl. Phys. Lett. 1978. V. 33. P. 1.
- Yang K.H., Rosenblatt C. // Appl. Phys. Lett. 1983. V. 43. P. 62.
- Demus D. Handbook of liquid crystals. V. 2A: low molecular weight liquid crystals I: calamitic liquid crystals. John Wiley & Sons, 2011.
- Khazimullin M.V., Lebedev Y.A. // Rev. Sci. Instrum. 2010. V. 81. No. 4. Art. No. 043110.
- Salamon P., Eber N., Krekhov A., Buka A. // Phys. Rev. E 2013. V. 87. Art. No. 032505.
- De Jeu H.H., Claassen W.A.P., Spruijt A.M.J. // Mol. Cryst. Liq. Cryst. 1976. V. 37. P. 269.
- Bogi A., Faetti S. // Liq. Cryst. 2001. V. 28. No. 5. P. 729.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
