ПРИМЕНЕНИЕ МЕТОДОВ ИМПУЛЬСНОЙ АКУСТИЧЕСКОЙ МИКРОСКОПИИ ДЛЯ ИССЛЕДОВАНИЯ ГУБЧАТЫХ БИОКОМПОЗИТОВ НА ОСНОВЕ ХИТОЗАНА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложена методика локальной оценки акустических свойств губчатых полимерных образцов, основанная на визуализации микроструктуры, измерении затухания и скорости звука. Предложенный подход является актуальным для изучения биополимерных композитных материалов и конструкций на их основе, поскольку дает возможность in situ наблюдать деградацию структуры под воздействием внешних факторов, а также при необходимости исследовать накопление биологических соединений.

Об авторах

Ю. С. Петронюк

Федеральное государственное бюджетное учреждение науки «Институт биохимической физики имени Н. М. Эмануэля Российской академии наук»

Email: jps7@mail.ru
Москва, Россия

Е. А. Храмцова

Федеральное государственное бюджетное учреждение науки «Институт биохимической физики имени Н. М. Эмануэля Российской академии наук»

Москва, Россия

К. Г. Антипова

Федеральное государственное бюджетное учреждение «Национальный исследовательский центр «Курчатовский институт»

Email: email@example.com
Москва, Россия

С. Г. Васильева

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова»

Москва, Россия

А. Н. Богаченков

Федеральное государственное бюджетное учреждение науки «Институт биохимической физики имени Н. М. Эмануэля Российской академии наук»

Москва, Россия

А. Е. Соловченко

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова»

Москва, Россия

Т. Е. Григорьев

Федеральное государственное бюджетное учреждение «Национальный исследовательский центр «Курчатовский институт»; Федеральное государственное бюджетное учреждение науки «Институт элементоорганических соединений имени А. Н. Несмеянова Российской академии наук»

Москва, Россия; Москва, Россия

Список литературы

  1. Peluso G., Petillo O., Ranieri M. et al. // Biomaterials. 1994. V. 15. P. 1215.
  2. Магомедов К.Э., Омельянчик А.С., Воронцов С.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 819
  3. Magomedov K.E., Omelyanchik A.S., Vorontsov S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 720.
  4. Fiebrig I., Harding S.E., Stokke B.T. et al. // Eur. J. Pharm. Sci. 1994. V. 2. P. 185.
  5. Grzybek P., Jakubski Ł., Dudek G. // Int. J. Mol. Sci. 2022. V. 23. Art. No. 9932.
  6. Wujcicki Ł., Kluczka J. // Int. J. Mol. Sci. 2023. V. 24. Art. No. 12060.
  7. Wujcicki Ł., Mandok T., Budzinska–Lipka W. et al. // Sci. Reports. 2023. V. 13. Art. No. 13049.
  8. Vasilieva S., Lukyanov A., Antipova C. et al. // Int. J. Mol. Sci. 2023. V. 24. No. 13. Art. No. 10988.
  9. Kluczka J. // Int. J. Mol. Sci. 2024. V. 25. P. 554.
  10. Kluczka J. // Polymers. 2020. V. 12. Art. No. 635.
  11. Lingait D., Rahagude R., Gaharwar S.S. et al. // Int. J. Biol. Macromol. 2024. V. 257. Art. No. 128676.
  12. Briggs A., Kolosov O. Acoustic microscopy. Oxford University Press, 2009. 380 p.
  13. Yu H. // Appl. Microscopy. 2020. V. 50. No. 25. P. 3.
  14. Zakutailov K.V., Levin V.M., Petronyuk Y.S. // Inorg. Mater. 2010. V. 46. No. 15. P. 655.
  15. Anastasiadis P., Zinin P. // Open Neuroimag. J. 2018. V. 12. P. 69.
  16. Levin V., Petronyuk Y., Morokov E. et al. // Phys. Stat. Sol. B. 2016. V. 253. P. 1952.
  17. Петронюк Ю.С., Мороков Е.С., Левин В.М. // Изв. РАН. Сер. физ. 2015. Т. 79. № 10. С. 1425
  18. Petronyuk Y.S., Morokov E.S., Levin V.M. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 10. P. 1268.
  19. Петронюк Ю.С., Рыжова Т.Б., Левин В.М. // Изв. РАН. Сер. физ. 2022. Т. 86. № 1. С. 110
  20. Petronyuk Y.S., Levin V.M., Ryzhova T.B. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 74.
  21. Khramtsova E., Morokov E., Antipova C. et al. // Polymers. 2022. V. 14. No. 17. Art. No. 3526.
  22. Ngwa W., Luo W., Kamanyi A. et al. // J. Microscopy. 2005. V. 218. No. 3. P. 208.
  23. Hozumi N., Yoshida S., Kobayashi K. // Ultrasonics. 2019. V. 99. Art. No. 105966.
  24. Kim E.V., Petronyuk Y.S., Guseynov N.A. et al. // Bull. Exp. Bio. Med. 2021. V. 170. No. 3. P. 356.
  25. Петронюк Ю.С., Трофимова Н.Н., Зак П.П. и др. // Хим. физика. 2022. Т. 41. № 2. С. 27.
  26. Ruland A., Chen X., Khansari A. et al. // Soft Matter. 2018. V. 14. No. 35. P. 7228.
  27. Куликова О.Р., Храмцова Е.А., Антипова К.Г. и др. // Биомедицина. 2021. T. 17. № 3E. C. 42.
  28. Мэзон У. Физическая акустика. Т. 1. Методы и приборы ультразвуковых исследований. М.: Мир, 1966. 592 с.
  29. Salzer R. Biomedical imaging: principles and applications. John Wiley & Sons Inc., 2012. 441 p.
  30. Петронюк Ю.С., Титов С.А., Богаченков А.Н. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 84
  31. Petronyuk Y.S., Titov S.A., Bogachenkov A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 70.
  32. Petronyuk Y.S., Levin V.M., Titov S.A. // Phys. Procedia. 2015. V. 70. P. 626.
  33. Titov S.A., Levin V.M., Petronyuk Y.S. // Acoust. Phys. 2017. V. 63. No. 6. P. 744.
  34. Vasilieva S., Lobakova E., Grigoriev T. et al. // J. Water Proc. Engin. 2021. V. 40. Art. No. 101774.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025