Optical dynamics of a supercrystal of V-type quantum emitters: effects of the electronic states' dephasing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A theoretical study of the optical response of a two-dimensional supercrystal (monolayer) of quantum emitters with a doublet in the excited state to the action of a continuous external field has been carried out, considering the dephasing of the electronic states of the system. The secondary field acting on the V-emitter from other V-emitters of the system forms their nonlinearity and provides internal positive feedback, which leads to bistability, periodic and aperiodic auto-oscillations and including chaotic behavior. In the presence of dephasing, the multistability of the optical response is preserved. Phase relaxation leads to a change in the scenario of the system dynamics from chaos to periodic oscillations of the field amplitude, i. e., to a “chaos — limit cycle” bifurcation, a decrease in the reflectivity of the monolayer in linear and nonlinear modes.

Texto integral

Acesso é fechado

Sobre autores

D. Bayramdurdyev

Akmullah Bashkir State Pedagogical University

Email: rfmalikov@mail.ru
Rússia, Ufa

R. Malikov

Akmullah Bashkir State Pedagogical University

Autor responsável pela correspondência
Email: rfmalikov@mail.ru
Rússia, Ufa

Bibliografia

  1. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. P. 666.
  2. Neto A.H.C., Guinea F., Peres N.M.R. et al. // Rev. Mod. Phys. 2009. V. 81. P. 109.
  3. Manzeli S., Ovchinnikov D., Pasquier D. et al. // Nat. Rev. Mater. 2017. V. 2. P. 17033.
  4. Чернозатонский Л.А., Артюх А.А. // УФН 2018. Т. 188. С. 3; Chernozatonskii L.A., Artyukh A.A. // Phys. Usp. 2018. V. 61. P. 2.
  5. Back P., Zeytinoglu S., Ijaz A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037401.
  6. Scuri G., Zhou Y., High A. A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037402.
  7. Bonaccorso F., Lombardo A., Hasan T. et al. // Mater. Today. 2012. V. 15. P. 564.
  8. Bhimanapati G.R., Lin Z., Meunier V. et al. // ACS Nano. 2015. V. 9. Art. No. 11509.
  9. Tan C., Cao X., Wu X.J. et al. // Chem. Rev. 2017. V. 117. P. 6225.
  10. Solntsev A.S., Agarwal G.S., Kivshar Y.S. // Nature Photon. 2021. V. 15. P. 327.
  11. Jariwala D., Marks T.J., Hersam M.C. // Nature Mater. 2017. V. 16. P. 170.
  12. Evers W.H., Goris B., Bals S. et al. // Nano Lett. 2013. V. 13. P. 2317.
  13. Baranov A.V., Ushakova E.V., Golubkov V.V. et al. // Langmuir. 2015. V. 31. P. 506.
  14. Ushakova E.V., Cherevkov S.A., Litvin A.P. et al. // J. Phys. Chem. 2016. V. 120. P. 25061.
  15. Liu W., Luo X., Bao Y. et al. // Nature Chem. 2017. V. 9. P. 563.
  16. Mu P., Zhou G., Chen C.L. // Nano-Struct. NanoObjects. 2018. V. 15. P. 153.
  17. Бабина О.Ю., Глазов С.Ю., Федулов И.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 30; Babina O.Yu., Glazov S.Yu., Fedulov I.N. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 22.
  18. Самарцев В.В., Митрофанова Т.Г., Хасанов О.Х. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 302; Samartsev V.V., Mitrofanova T.G., Khasanov O.Kh. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 216.
  19. Zheludev N.I. // Science. 2010. V. 328. P. 582.
  20. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // Phys. Rev. A. 2019. V. 100. No. 3. Art. No. 033820.
  21. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // J. Optics. 2021. V. 23. Art. No. 115102.
  22. Байрамдурдыев Д.Я., Маликов Р.Ф., Рыжов И.В., Малышев В.А. // ЖЭТФ. 2020. Т. 158. № 2(8). С. 269; Bairamdurdyev D.Ya., Malikov R.F., Ryzhov I.V., Malyshev V.A. // JETP. 2020. V. 131. No. 2. P. 244.
  23. Маликов Р.Ф. Математическое моделирование кооперативных когерентных эффектов в спектроскопии: монография. Уфа: Изд-во «Гилем», 2006. — 206 с.
  24. Федянин В.В., Каримуллин К.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 361.
  25. Efros Al.L., Rosen M., Kuno M. et al. // Phys. Rev. B. 1996. V. 54. No. 7. P. 4843.
  26. Stufler S., Machnikowski P., Ester P. et al. // Phys. Rev. B. 2006. V. 73. Art. No. 125304.
  27. Dicke R.H. // Phys. Rev. 1954. V. 93. P. 99.
  28. Маликов Р.Ф., Трифонов Е.Д., Зайцев А.И. // ЖЭТФ. 1979. T. 76. С. 65; Malikov R.F., Trifonov E.D., Zaitsev A.I. // Sov. Phys. JETP. 1979. V. 49. P. 33.
  29. Benedict M.G., Ermolaev A.M., Malyshev V.A. et al. Super-radiance: multiatomic coherent emission. Bristol: IOP Publ., 1996.
  30. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of oscillators. New York: Pergamon Press, 1966.
  31. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Berlin: Springer, 1986.
  32. Ding F., Bozhevolnyi S.I. // Mater. Today. 2023. V. 71. P. 63.
  33. Тимощенко Е.В. Моделирование нелинейной динамики материального отклика плотных оптических слоев на резонансное излучение: монография. Могилев: МГУ им. А. А. Кулешова, 2023. 236 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic of energy levels and transitions of a quantum V-emitter

Baixar (48KB)
3. Fig. 2. Stationary solutions when phase relaxation is taken into account

Baixar (143KB)
4. Fig. 3. Dynamics and spectrum of the optical response of the supercrystal in the presence of phase relaxation

Baixar (394KB)
5. Fig. 4. Effect of dephasing on the linear reflection coefficient R, which is a function of the resonance detuning Δ31. Doublet splitting value Δ32 = 200

Baixar (112KB)
6. Fig. 5. Nonlinear reflection coefficient R of the supercrystal from intensity at different values of G of energy states dephasing. Dark (red) lines correspond to stable (unstable) regions of the reflection coefficient R

Baixar (114KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024