Waveguide structures and photon splitters fabricated by direct (3 + 1)D laser writing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of high-performance systems for the big data transmission and processing fabrication determines the importance of creating hybrid photonic integrated circuits with complex architecture. We studied of three-dimensional photonic waveguide structures created by direct (3 + 1)D laser writing, with the aim of adding such structures to photonic integrated circuits.

Sobre autores

D. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

D. Chubich

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

D. Shcherbakov

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

R. Pattia

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

A. Gritsienko

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny; Russia, 119991, Moscow

A. Pisarenko

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

I. Dushkin

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

A. Vitukhnovskiy

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny; Russia, 119991, Moscow

Bibliografia

  1. Son G., Han S., Park J. et al. // Nanophotonics. 2018. V. 7. No. 12. P. 1845.
  2. Pao Y.H., Rentzepis P.M. // Appl. Phys. Lett. 1965. V. 6. No. 5. P. 93.
  3. Sun H.B., Kawata S. // In: NMR. 3D Analysis. Photopolymerization. Berlin, Heidelberg: Springer, 2004. P. 169.
  4. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Опт. и спектроск. 2019. Т. 126. № 1. С. 63; Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. // Opt. Spectrosc. 2019. V. 126. No. 1. P. 54.
  5. Gehring H., Eich A., Schuck C., Pernice W.H.P. // Opt. Lett. 2019. V. 44. No. 20. P. 5089.
  6. Lindenmann N., Dottermusch S., Goedecke M.-L. et al. // J. Light. Technol. 2015. V. 33. No. 4. P. 755.
  7. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 927; Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 760.
  8. Schumann M., Buckmann T., Gruhler N. et al. // Light. Sci. Appl. 2014. V. 3. No. 6. Art. No. e175.
  9. Schell A.W., Kaschke J., Fischer J. et al. // Sci. Reports. 2013. V. 3. P. 1577.
  10. Moughames J., Porte X., Larger L. et al. // Opt. Mater. Express. 2020. V. 10. No. 11. P. 2952.
  11. Lindenmann N., Balthasar G., Hillerkuss D. et al. // Opt. Express. 2012. V. 20. No. 16. P. 17667.
  12. Billah M.R., Blaicher M., Hoose T. et al. // Optica. 2018. V. 5. No. 7. P. 876.
  13. Dietrich P.-I., Blaicher M., Reuter I. et al. // Nature Photonics. 2018. V. 12. No. 4. P. 241.
  14. Atabaki A.H., Moazeni S., Pavanello F. et al. // Nature. 2018. V. 556. No. 7701. P. 349.
  15. Stojanović V., Ram R. J., Popović M. et al. // Opt. Express. 2018. V. 26. No. 10. P. 13106.
  16. Selvaraja S.K., Sethi P. // Emerging Waveguide Technology. 2018. V. 95. P. 458.
  17. Dong P., Chen Y.K., Duan G.H., Neilson D.T. // Nanophotonics. 2014. V. 3. No. 4–5. P. 215.
  18. Chen L., Doerr C.R., Chen Y.K. // Opt. Lett. 2011. V. 36. No. 4. P. 469.
  19. Gao L., Huo Y., Zang K. et al. // Sci. Reports. 2015. V. 5. No. 1. Art. No. 15794.
  20. Staude I., Schilling J. // Nature Photonics. 2017. V. 11. No. 5. P. 274.
  21. Moughames J., Porte X., Thiel M. et al. // Optica. 2020. V. 7. No. 6. P. 640.
  22. Dottermusch S., Busko D., Langenhorst M. et al. // Opt. Lett. 2019. V. 44. No. 1. P. 29.
  23. Shcherbakov D.A., Kolymagin D.A., Matital R.P. et al. // J. Russ. Laser Res. 2023. V. 44. P. 47.
  24. Porte X., Dinc N.-U., Moughames J. et al. // Optica. 2021. V. 8. No. 10. P. 1281.
  25. Zhiganshina E.R., Arsenyev M.V., Chubich D.A. et al. // Eur. Polym. J. 2022. V. 162. Art. No. 110917.
  26. Dorkenoo K., Van Wonderen A.J., Bulou H. et al. // Appl. Phys. Lett. 2003. V. 83. No. 12. P. 2474.
  27. Schmid M., Ludescher D., Giessen H. // Opt. Mater. Express. 2019. V. 9. No. 12. P. 4564.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (49KB)
3.

Baixar (411KB)
4.

Baixar (167KB)
5.

Baixar (448KB)

Declaração de direitos autorais © Д.А. Колымагин, Д.А. Чубич, Д.А. Щербаков, Р.М. Паттиа, А.В. Грициенко, А.В. Писаренко, И.В. Душкин, А.Г. Витухновский, 2023