Micromagnetic states and Bloch points in multilayer nanofilms: influence of anisotropy and magnetic field
- Autores: Filippova V.V.1, Gareeva Z.V.1
- 
							Afiliações: 
							- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
 
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 386–391
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://rjpbr.com/0367-6765/article/view/686016
- DOI: https://doi.org/10.31857/S0367676525030087
- EDN: https://elibrary.ru/FRNAPP
- ID: 686016
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We presented a numerical simulation of the processes of magnetization reversal of an exchange-coupled magnetic nanostructure, studies micromagnetic states in the system and their transformation under the influence of an external magnetic field and shows the possibility of realizing magnetic states of the Bloch point type. The influence of magnetic anisotropy constants of the “easy plane” type on the conditions of existence and structure of topological objects is studied.
			                Palavras-chave
Sobre autores
V. Filippova
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
														Email: mukhamadeeva.vika@mail.ru
				                					                																			                								 				                								Ufa, 450075 Russia						
Z. Gareeva
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
Bibliografia
- Загорский Д.Л., Долуденко И.М., Чигарев С.Г. и др. // Изв. РАН. Сер. физ. 2021. T. 85. № 8. C. 1102; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 848.
- Шканакина М.Д., Кичин Г.А., Скирдков П.Т. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 2. C. 109; Shkanakina M.D., Kichin G.A., Skirdkov P.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 92.
- Акимов М.Л., Поляков П.А., Шевцов В.С. // Изв. РАН. Сер. физ. 2020. T. 84. № 5. C. 723; Akimov M.L., Polyakov P.A., Shevtsov V.S. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 596.
- Lang M., Beg M., Hovorka O., Fangohr H. // Sci. Reports. 2023. V. 13. Art. No. 6910.
- Gobel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
- Feldtkeller E. // Z. Angew. Phys. 1965. V. 19. No. 6. P. 530.
- Doring W. // J. Appl. Phys. 1968. V. 39. No. 2. P. 1006.
- Harrison C.G., Leaver K.D. // Phys. Stat. Sol. 1973. V. 15. P. 415.
- Зубов В.Е., Кринчик Г.С., Кудаков А.Д. // Письма в ЖЭТФ. 1988. T. 47. № 3. C. 134; Zubov V.E., Krinchik G.S., Kudakov A.D. // JETP Lett. 1988. V. 47. No. 1. P. 161.
- Кабанов Ю.П., Дедух Л.М., Никитенко В.И. // Письма в ЖЭТФ. 1989. V. 49. № 10. Р. 551; Kabanov Y.P., Dedukh L.M., Nikitenko V.I. // JETP Lett. 1989. V. 49. No. 10. Р. 637.
- Andreas C., Kа?kay A., Hertel R. // Phys. Rev. 2014. V. 89. No. 13. Art. No. 134403.
- Tiaville A., Garca J.M., Dittrich R. et al. // Phys. Rev. 2003. V. 67. No. 9. Art. No. 094410.
- Hertel R., Gliga S., Fahnle M., Schneider C.M. // Phys. Rev. Lett. 2007. V. 98. No. 11. Art. No. 117201.
- Wohlhuter P., Bryan M.T., Warnicke P. et al. // Nature Commun. 2015. V. 6. No. 1. Art. No. 7836.
- Hertel R., Schneider C.M. // Phys. Rev. Lett. 2006. V. 97. No. 17. Art. No. 177202.
- Beg M., Pepper R.A., Cortes-Ortuno D. et al. // Sci. Reports. 2019. V. 9. No. 1. Art. No. 7959.
- Lang M., Pathak S.A., Holt S.J.R. et al. // Sci. Reports. 2023. V. 13. No. 1. Art. No. 18934.
- Donahue M.J., Porter D.G. // OOMMF User’s Guide. Version 1.0. No. NIST IR 6376. NIST, 1999. 94 р.
- Malozemoff A.P., Slonczewski J.C. Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research. Academic Press., 2013. 334 р.
- Eschenfelder A.H. Magnetic Bubble Technology. Springer Science & Business Media, 2012. 317 р.
- Bauer J.J., Rosenberg E.R., Kundu S. et al. // Adv. Electr. Mater. 2020. V. 6. No. 1. Art. No. 1900820.
- Gareeva Z.V., Filippova V.V., Shulga N.V., Doroshenko R.A. // Phys. Chem. Chem. Phys. 2024. V. 26. No. 3. Art. No. 22164.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
