Ferromagnetic resonance and the spin Hall effect in the Fe3Al/Pt bilayer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We presented the results of studies of the magnetostatic and magnetic resonance properties of a Fe3Al/Pt thin-film bilayer structure synthesized by the molecular beam epitaxy method. Magnetometry and ferromagnetic resonance data indicate four-fold in-plane magnetocrystalline anisotropy of the Fe3Al layer. Under spin pumping conditions, the magnetic field dependence of the voltage signal arising due to the inverse spin Hall effect was measured, and the quantitative characteristic of the spin-charge transformation, the spin-Hall angle, in platinum was assessed as θSH = 0.030 ± 0.005.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Kadikova

Kazan Federal University

Хат алмасуға жауапты Автор.
Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

B. Gabbasov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

I. Yanilkin

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

A. Gumarov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

D. Zverev

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

A. Kiiamov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

L. Tagirov

Kazan Federal University; Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan

Email: anelyakadikova11@gmail.com

Institute of Physics, Zavoisky Physical-Technical Institute

Ресей, Kazan; Kazan

R. Yusupov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Ресей, Kazan

Әдебиет тізімі

  1. Ферт А. // УФН. 2008. Т. 178. № 12. С. 1336; Fert A. // Phys. Usp. 2008. V. 51. P. 1336.
  2. Грюнберг П.А. // УФН. 2008. Т. 178. № 12. С. 1349; Gruenberg P.A. // Phys. Usp. 2008. V. 51. P. 1349.
  3. Kato Y.K., Myers R.C., Gossard A.C. et al. // Science. 2004. V. 306. No. 5703. P. 1910.
  4. Wunderlich J., Kaestner B., Sinova J. et al. // Phys. Rev. Lett. 2005. V. 94. No. 4. Art. No. 047204.
  5. Valenzuela S.O., Tinkham M. // Nature. 2006. V. 442. No. 7099. P. 176.
  6. Sinova J., Valenzuela S.O., Wunderlich J. et al. // Rev. Mod. Phys. 2015. V. 87. No. 4. P. 1213.
  7. Трушин А.С., Кичин Г.А., Звездин К.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 105; Trushin A.S., Kichin G.A., Zvezdin K.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 88.
  8. Saitoh E., Ueda M., Miyajima H. et al. // Appl. Phys. Lett. 2006. V. 88. No. 18. Art. No. 182509.
  9. Sandweg C.W., Kajiwara Y., Ando K. et al. // App. Phys. Lett. 2010. V. 97. No. 25. Art. No. 252504.
  10. Wang Y., Deorani P., Qiu X. et al. // App. Phys. Lett. 2014. V. 105. No. 15. Art. No. 152412.
  11. Wei Y., Zhang W., Lv B. et al. // Sci. Advances. 2021. V. 7. No. 4. Art. No. eabc5053.
  12. Костенко М.Г., Лукоянов А.В., Шредер Е.И. // Письма в ЖЭТФ. 2018. Т. 107. № 1—2. С. 128; Kostenko M.G., Lukoyanov A.V., Shreder E.I. // JETP Lett. 2018. V. 107. No. 2. P. 126.
  13. Ikeda O., Ohnuma I., Kainuma R. et al. // Intermetallics. 2001. V. 9. No. 9. P. 755.
  14. Матюнина М.В., Соколовский В.В., Загребин М.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 927; Matyunina M.V., Sokolovskiy V.V., Zagrebin M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 844.
  15. Tserkovnyak Y., Brataas A., Bauer G.E.W. // Phys. Rev. Lett. 2002. V. 88. No. 11. Art. No. 117601.
  16. Ando K., Takahashi S., Ieda J. et al. // J. Appl. Phys. 2011. V. 109. No. 10. Art. No. 103913.
  17. Dubowik J., Graczyk P., Krysztofik A. et al. // Phys. Rev. Appl. 2020. V. 13. No. 5. Art. No. 054011.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. X-ray diffraction pattern of a thin Fe3Al film on a MgO (001) substrate when scanning along the angle θ.

Жүктеу (187KB)
3. Fig. 2. Magnetization reversal curves with a magnetic field lying in the plane of the samples: blue line – for H || [110]Fe3Al, burgundy line – for H || [100]Fe3Al; the inset shows the magnetization curve in a magnetic field applied along the normal to the film, H || [001]Fe3Al.

Жүктеу (254KB)
4. Fig. 3. FMR spectra of a single Fe3Al film (circles) and Fe3Al/Pt (triangles) and the results of their approximation (red lines) (a); orientation dependences of the FMR spectra of a thin Fe3Al film and a two-layer Fe3Al/Pt structure with rotation of the magnetic field in the plane of the films (b).

Жүктеу (341KB)
5. Fig. 4. Spin-Hall EMF arising under spin pumping conditions due to the manifestation of the inverse spin Hall effect in the Fe3Al/Pt bilayer structure (solid line). The dashed line shows the FMR spectrum recorded in the same orientation of the sample.

Жүктеу (93KB)

© Russian Academy of Sciences, 2024