The influence of the fluoride process of tungsten deposition parameters on the properties of tungsten self-composites obtained by chemical vapor infiltration
- Authors: Bukatin T.N.1, Karpenkov D.Y.1, Dushik V.V.2, Ten D.V.1
- 
							Affiliations: 
							- The National University of Science and Technology MISIS
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
 
- Issue: Vol 88, No 5 (2024)
- Pages: 760-766
- Section: Physics of ferroelectrics
- URL: https://rjpbr.com/0367-6765/article/view/654682
- DOI: https://doi.org/10.31857/S0367676524050112
- EDN: https://elibrary.ru/OWWIZF
- ID: 654682
Cite item
Abstract
The influence of the parameters of the chemical vapor infiltration process of tungsten powder on the depth of its impregnation, mechanical properties and density of the obtained blanks is studied. It was found that the depth of infiltration depends on the rate of chemical vapor deposition of tungsten, and the maximum bend strength is achieved the sample, obtained at temperature of 450 °C and a gas pressure of 133 mbar. The method of chemical vapor infiltration is promising for the development of technology of additive manufacture of the items made of tungsten and composites based on it.
Full Text
 
												
	                        About the authors
T. N. Bukatin
The National University of Science and Technology MISIS
							Author for correspondence.
							Email: bukatin.t@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119049						
D. Y. Karpenkov
The National University of Science and Technology MISIS
														Email: bukatin.t@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119049						
V. V. Dushik
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
														Email: bukatin.t@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119071						
D. V. Ten
The National University of Science and Technology MISIS
														Email: bukatin.t@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119049						
References
- Zohm H. // Fusion Eng. Des. 2013. V. 88. No. 6—8. P. 428.
- https://pubchem.ncbi.nlm.nih.gov/compound/Tungsten.
- Kim H., Lee H.J., Kim S.H., Jang C. // Fusion Eng. Des. A. 2016. V. 109—111. P. 590.
- Gallardo J.A.G., Giménez M.A.N., Gervasoni J.L. // Ann. Nucl. Energy. 2020. V. 147. Art. No. 107739.
- Xie J., Lu H., Lu J. et al. // Surf. Coat. Technol. 2021. V. 409. Art. No. 126884.
- Pitts R.A., Bonnin X., Escourbiac F. et al. // Nucl. Mater. Energy. 2019. V. 20. Art. No. 100696.
- Хорьков К.С., Абрамов В.Д., Кочуев Д.А. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1619; Khorkov K.S., Abramov V.D., Kochuev D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 12. P. 1429.
- Bachmann C., Arbeiter F., Boccaccini L.V. et al. // Fusion Eng. Des. 2016. V. 112. P. 527.
- Harutyunyan Z., Ogorodnikova O., Gasparyan Y. et al. // J. Nucl. Mater. 2022. V. 567. No. 153811.
- Marinelli G., Martina F., Lewtas H. et al. // J. Nucl. Mater. 2019. V. 522. P. 45.
- Крат С.А., Фефелова Е.А., Пришвицын А.С. и др. // Изв. РАН Сер. физ. 2022. Т. 86. № 5. С. 627; Krat S.A., Fefelova E.A., Prishvitsyn A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 521.
- Jasper B., Coenen J.W., Riesch J. et al. // Mater. Sci. Forum. 2015. V. 825. P. 125.
- Dong Z., Ma Z., Yu L. et al. // Nature Commun. 2021. V. 12. P. 5052.
- Rieth M., Dudarev S.L., De Vicente S.G. et al. // J. Nucl. Mater. 2013. V. 432. No. 1—3. P. 482.
- Puma G.L., Bono A., Krishnaiah D., Collin J.G. // J. Hazard. Mater. 2008. V. 157. No. 2—3. P. 209.
- Fotovvati B., Namdari N., Dehghanghadikolaei A. // J. Manuf. Mater. Process. 2019. V. 3. No. 1. P. 28.
- Tamura S., Tokunaga K., Yoshida N. // J. Nucl. Mater. 2002. V. 307. P. 735.
- Song J., Yu Y., Zhuang Z. et al. // J. Nucl. Mater. 2013. V. 442(1—3). P. S208.
- Murphy J.D., Giannattasio A., Yao Z. et al. // J. Nucl. Mater. 2009. V. 386. P. 583.
- Angelescu D. E., Schroeder R. J. Технология изготовления металлических устройств со встроенными оптическими элементами, оптическими устройствами или оптическими и электрическими вводами. Патент США № 20100041155A1. 2008.
- Raumann L., Coenen J.W., Riesch J. et al. // Surf. Coat. Technol. 2020. V. 381. Art. No. 124745.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



