Radioelectric effect in a superlattice based on a 3D Dirac crystal
- Authors: Valkov A.V.1, Kryuchkov S.V.1,2, Kukhar E.I.1
-
Affiliations:
- Volgograd State Technical University
- Volgograd State Socio-Pedagogical University
- Issue: Vol 89, No 1 (2025)
- Pages: 18-22
- Section: Wave Phenomena: Physics and Applications
- URL: https://rjpbr.com/0367-6765/article/view/683811
- DOI: https://doi.org/10.31857/S0367676525010037
- EDN: https://elibrary.ru/DCFZFV
- ID: 683811
Cite item
Abstract
A kinetic theory for the radioelectric effect in a superlattice based on a 3D Dirac crystal in a constant electric field has been constructed. The current density has been shown to get the resonance in the case where the Bloch frequency is a multiple of the frequency of the electromagnetic wave. The latter can lead to a change in the direction of the current density. The amplitude dependence of the radioelectric current density has been studied.
Keywords
About the authors
A. V. Valkov
Volgograd State Technical UniversityVolgograd, Russia
S. V. Kryuchkov
Volgograd State Technical University; Volgograd State Socio-Pedagogical UniversityVolgograd, Russia; Volgograd, Russia
E. I. Kukhar
Volgograd State Technical University
Email: eikuhar@yandex.ru
Volgograd, Russia
References
- Yang B.-J., Nagaosa N. // Nature Commun. 2014. V. 5. Art. No. 4898.
- Umar E., Ikram M., Haider J. et al. // J. Environ. Chem. Eng. 2023. V. 11. Art. No. 110339.
- Zhong Ch., Zhang W., Ding G. et al. // Carbon. 2019. V. 154. P. 478.
- Ding Y., Li Ch., Tian M. et al. // Front. Phys. 2023. V. 18. Art. No. 53301.
- Macili A., Vlamidis Y., Pfusterschmied G. et al. // Appl. Surf. Sci. 2023. V. 615. Art. No. 156375.
- Liu Z.K., Zhou B., Wang Z.J. et al. // Science. 2014. V. 343. P. 864.
- Armitage N.P., Mele E.J., Vishwanath A. // Rev. Mod. Phys. 2018. V. 90. Art. No. 15001.
- Ameri S.K., Singh P.K., Sonkusale S.R. // Analyt. Chim. Acta. 2016. V. 934. P. 212.
- Sun Zh., Fang S., Hu Y.H. // Chem. Rev. 2020. V. 120. Art. No. 10336.
- Bolmatov D., Mou Ch.-Yu // JETP. 2011. V. 112. P. 102.
- Burkov A.A., Balents L. // Phys. Rev. Lett. 2011. V. 107. Art. No. 127205.
- Kryuchkov S.V., Kukhar’ E.I. // Physica B. 2013. V. 408. P. 188.
- Martin-Vergara F., Rus F., Villatoro F.R. // Chaos Solit. Fractals. 2021. V. 151. Art. No. 111281.
- Martin-Vergara F., Rus F., Villatoro F.R. // Chaos Solit. Fractals. 2022. V. 162. Art. No. 112530.
- Badikova P.V., Zav’yalov D.V., Konchenkov V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 30.
- Эпштейн Э.М. // Изв. вузов. Радиофиз. 1981. Т. 24. № 4. С. 514.
- Крючков С.В., Кухарь Е.И., Сивашова Е.С. // ФТТ. 2008. Т. 50. № 6. С. 1102
- Kryuchkov S.V., Kukhar’ E.I., Sivashova E.S. // Phys. Solid State. 2008. V. 50. No. 6. P. 1150.
- Kryuchkov S.V., Kukhar’ E.I. // Physica E. 2013. V. 48. P. 96.
- Meyer J.C., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. P. 60.
- Крючков С.В., Кухарь Е.И., Ионкина Е.С. // ФТТ. 2016. Т. 58. № 7. С. 1254
- Kryuchkov S.V., Kukhar’ E.I., Ionkina E.S. // Phys. Solid State. 2016. V. 58. No. 7. P. 1295.
- Zhang G., Qin H., Teng J. et al. // Appl. Phys. Lett. 2009. V. 95. Art. No. 053114.
- Koo S., Park I., Watanabe K. et al. // Nano Lett. 2021. V. 21. No. 15. P. 6600.
- Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешет-ками. М.: Наука, 1989.
- Kryuchkov S.V., Kukhar’ E.I., Zav’yalov D.V. // Phys. Wave Phenom. 2013. V. 21. No. 3. P. 207.
Supplementary files
