О доменной структуре пленок ферритов-гранатов со сложной анизотропией при квазистационарном перемагничивании

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обсуждаются результаты, полученные при экспериментальном и теоретическом анализе квазистационарного перемагничивания пленок ферритов-гранатов со сложной анизотропией. С помощью магнитооптической установки, основанной на эффекте Фарадея, выявлены условия, при которых возможно уменьшение области возникновения доменной структуры, а также установлено наличие разрушений состояния однородного намагничивания магнитной пленки в четырех узких областях, расположенных относительно друг друга под прямыми углами. Предложена теория, хорошо согласующаяся с экспериментальными результатами.

Об авторах

А. В. Матюнин

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова»

Автор, ответственный за переписку.
Email: physphak@mail.ru

кафедра общей физики, физического факультета

Россия, Москва

Г. М. Николадзе

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова»

Email: physphak@mail.ru

кафедра общей физики, физического факультета

Россия, Москва

П. А. Поляков

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова»

Email: physphak@mail.ru

кафедра общей физики, физического факультета

Россия, Москва

Список литературы

  1. Demirci E. // J. Supercond. Nov. Magn. 2020. V. 33. P. 3835.
  2. Шевцов В.С., Каминская Т.П., Поляков О.П. и др.// Изв. РАН. Сер. физ. 2023. Т. 87. № 11. C. 1662; Shevtsov V.S., Kaminskaya T.P., Polyakov O.P. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1719.
  3. Sreevidya P.V., Khan Jakeer, Barshilia Harish C. et al. // JMMM. 2018. V. 448. P. 298.
  4. Jun Zhao Chong, Li Min, Li Jian-Wei et al. // JMMM. 2014. V. 368. P. 328.
  5. Шевцов В.С., Амеличев В.В., Васильев Д.В. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. C. 1247; Shevtsov V.S., Amelichev V.V., Vasilyev D.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1233.
  6. Singh Sadhana, Kumar Pawan, Gupta Ajay et. al. // JMMM. 2020. V. 513. Art. No. 167186.
  7. Поляков О.П., Касаткин С.И, Амеличев В.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 11. C. 1554; Polyakov O.P., Kasatkin S.I., Amelichev V.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 11. P. 1217.
  8. Bhatti Sabpreet, Sbiaa Rachid, Hirohata Atsufumi et al. // Today. 2017. V. 20. No. 9. P. 530.
  9. Матюнин А.В., Николадзе Г.М., Поляков П.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1239; Matyunin A.V., Nikoladze G.M., Polyakov P.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1026.
  10. Колотов О.С., Матюнин А.В., Поляков П.А. // ФТТ. 2017. Т. 59. № 10. C. 1892; Kolotov O.S., Matyunin A.V., Polyakov P.A. // Phys. Solid State. 2017. V. 59. No. 10. P. 1913.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024