Comparison of second harmonic generation efficiency in alumo- and germanosilicate glasses at volumetric optical poling
- Авторлар: Vostrikova L.I.1, Kartashev l.A.1
-
Мекемелер:
- Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
- Шығарылым: Том 88, № 7 (2024)
- Беттер: 1050-1057
- Бөлім: Luminescence and Laser Physics
- URL: https://rjpbr.com/0367-6765/article/view/676731
- DOI: https://doi.org/10.31857/S0367676524070088
- EDN: https://elibrary.ru/PBPGWR
- ID: 676731
Дәйексөз келтіру
Аннотация
The second harmonic generation is investigated on microperiodic gratings of nonlinear polarizability photointegrated at volumetric optical poling in alumo- and germanosilicate glasses. The comparison shows the significant impact of nitrogen, phosphorus, and rare-earth element additions. The developed theory of nonlinear-frequency conversion in case of current mechanism allowed to estimate the characteristics and magnitudes of photointegrated nonlinearities in glasses. The sharp dependence of the harmonic generation efficiency on intensity of the component of poling radiation was detected because of the possible influence of photoconductivity, which must be considered when developing perspective samples with photointegrated gratings.
Толық мәтін

Авторлар туралы
L. Vostrikova
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: vostrik@isp.nsc.ru
Ресей, Novosibirsk
l. Kartashev
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
Email: vostrik@isp.nsc.ru
Ресей, Novosibirsk
Әдебиет тізімі
- Antonyuk B.P., Antonyuk V.B., Frolov A.A. // Opt. Commun. 2000. V. 174. No. 5—6. P. 427.
- Балакирев М.К., Вострикова Л.И., Смирнов В.А. // Квант. электрон. 2008. Т. 38. № 8. С. 724; Balakirev M.K., Vostrikova L.I., Smirnov V.A. // Quantum Electron. 2008. V. 38. No. 8. P. 724.
- Баскин Э.М., Энтин М.В. // Письма в ЖЭТФ. 1988. Т. 48. № 10. С. 554; Baskin E.M., Entin M.V. // JETP Lett. 1988. V. 48. No. 10. P. 601.
- Kovalev V.M., Sonowal K., Savenko I.G. // Phys. Rev. B. 2021. V. 103. No. 2. Art. No. 024513.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170E.
- Hickstein D.D., Carlson D.R., Mundoor H. et al. // Nature Photonics. 2019. V. 13. No. 7. P. 494.
- Balakirev M.K., Kityk I.V., Smirnov V.A. et al. // Phys. Rev. A. 2003. V. 67. No. 2. Art. No. 023806.
- Tsutsumi N., Odane C. // J. Opt. Soc. Amer. B. 2003. V. 20. No. 7. P. 1514.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2022. V. 12193. Art. No. 121930O.
- Liu Y.L., Wang W.J., Gao X.X. et al. // J. Atom. Mol. Sci. 2011. V. 2. No. 4. P. 334.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170D.
- Nitiss E., Liu T., Grassani D. et al. // ACS Photonics. 2020. V. 7. No. 1. P. 147.
- Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 203; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 181.
- Porcel M.A.G., Mak J., Taballione C. et al. // Opt. Express. 2017. V. 25. No. 26. P. 33143.
- Reddy A.S.S., Kityk A.V., Jedryka J. et al. // Opt. Mater. 2022. V. 123. Art. No. 111858.
- Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 198; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 176.
- Балакирев М.К., Вострикова Л.И., Смирнов В.А., Энтин М.В. // Письма в ЖЭТФ. 2004. Т. 80. № 1. С. 32; Balakirev M.K., Vostrikova L.I., Smirnov V.A., Entin M.V. // JETP Lett. 2004. V. 80. No. 1. P. 26.
- Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.
- Мальчукова Е.В., Теруков Е.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 956; Malchukova E.V., Terukov E.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 797.
- Goutaland F., Jander P., Brocklesby W.S., Dai G. // Opt. Mater. 2003. V. 22. No. 4. P. 383.
Қосымша файлдар
