Studying the optical properties of assembled silver and gold nanoparticles for the purpose of creating SERS sensors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The optical properties of silver and gold sols with different sizes of nanoparticles and the method of their chemical deposition on the surface of silicon, silicon oxide, glass and aluminum foil were studied in order to obtain SERS substrates – promising platforms for the development of aptamer sensors and immunochemical analysis of various pathogens. It has been established that for operation on lasers with exciting radiation wavelengths of 532, 638 and 785 nm, it is possible to create universal SERS substrates based on colloidal solutions obtained by the liquid-phase chemical method with an average silver particle size of 40 nm and by the Leopold-Lendl method with an average size of 20 nm.

Full Text

Restricted Access

About the authors

A. Yu. Subekin

Moscow Institute of Physics and Technology

Email: kukushvi@mail.ru
Russian Federation, Dolgoprudny

T. E. Pylaev

Saratov Scientific Center of the Russian Academy of Sciences; Razumovsky Saratov State Medical University of the Ministry of Health of the Russian Federation

Email: kukushvi@mail.ru
Russian Federation, Saratov; Saratov

V. I. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Author for correspondence.
Email: kukushvi@mail.ru
Russian Federation, Chernogolovka

E. V. Rudakova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: kukushvi@mail.ru
Russian Federation, Chernogolovka

B. N. Khlebtsov

Saratov Scientific Center of the Russian Academy of Sciences

Email: kukushvi@mail.ru
Russian Federation, Saratov

References

  1. Федеральный закон № 492 от 30 декабря 2020 г.
  2. https://emergency.cdc.gov/agent/agentlist-category.asp.
  3. https://www.who.int/health-topics/biological-weapons.
  4. Конвенция о запрещении биологического и токсинного оружия от 10 апреля 1972 г.
  5. https://стопкоронавирус.рф.
  6. Darwish I.A. // Int. J. Biomed. Sci. 2006. V. 2. P. 217.
  7. Bojorge R.N., Salgado A.M., Valdman B. // Braz. J. Chem. Eng. 2009. V. 26. No. 2. P. 227.
  8. Zhou L., Zhou J., Feng Z. et al. // Analyst. 2016. V. 141. P. 2534.
  9. Lim C.Y., Granger J.H., Porter M.D. // Analyt. Chim. Acta X. 2019. V. 1. Art. No. 100002.
  10. Kamorachaia K., Sakamoto K., Laochareonsukc R. // RSC Advances. 2016. V. 6. P. 97791.
  11. Byzova N.A., Zvereva E.A., Zherdev A.V. et al. // Analyt. Chim. Acta. 2011. V. 701. No. 2. P. 209.
  12. Dzantiev B.B., Urusov A.E., Zherdev A.V. // Biotechnol. Acta. 2013. V. 6. No. 4. P. 94.
  13. Leopold N., Lendl B. // J. Phys. Chem. B. 2003. V. 107. P. 5723.
  14. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. // Усп. химии. 2008. Т. 77. № 3. С. 242.
  15. Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. P. 3391.
  16. Лисичкин Г.В. Модифицированные кремнеземы в сорбции, катализе и хроматографии. М.: Химия, 1986. 247 с.
  17. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Тип. «Паладин»: Принта, 2010. 288 с.
  18. Копицын Д.С., Котелев М.С., Зиангирова М.Ю. и др. // Башкир. хим. журн. 2014. Т. 21. № 4. С. 104.
  19. Zheng Y., Zhong X., Li Zh., Xia Y. // Part. Part. Syst. Charact. 2014. V. 31. P. 266.
  20. Khlebtsov B.N., Tumskiy R.S., Burov A.M. et al. // ACS Appl. Nano Mater. 2019. V. 2. No. 8. P. 5020.
  21. Zavyalova E., Ambartsumyan O., Zhdanov G. et al. // Nanomaterials. 2021. V. 11. No. 6. P. 1394.
  22. Кукушкин В.И., Астраханцева А.С., Морозова Е.Н. // Изв. РАН. Сер. физ. 2021. T. 85. № 2. С. 182; Kukushlin V.I., Astrakhantseva A.S., Morozova E.N. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 133.
  23. Canpean V., Astilean S. // Spectrochim. Acta Part A. 2012. V. 96. P. 862.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Extinction spectra (a); typical SEM images of freshly prepared colloids of Au nanoparticles with different average sizes: 10 (b); 40 (c); 60 (d); 80 (e); 100 nm (f). Scale bars correspond to 100 nm

Download (319KB)
3. Fig. 2. Extinction spectra (a); typical TEM images of freshly prepared colloids of Ag nanoparticles with different average sizes: 20 (according to the Leopold-Lendl method [13, 21]) (b); 40 (c); 60 (d); 80 (e); 100 nm (f). Scale bars are 100 nm

Download (297KB)
4. Fig. 3. GCR spectra of 4-AVT: Silver nanoparticles synthesised using the Leopold-Lendl technique, λvozb = 532 nm (a); silver nanoparticles synthesised using the Leopold-Lendl technique, λvozb = 638 nm (b); silver nanoparticles synthesised by Leopold-Lendl method, λvozb = 785 nm (c); 60 nm gold nanoparticles, λvozb = 638 nm (d); 60 nm gold nanoparticles, λvozb = 785 nm (e)

Download (292KB)
5. Fig. 4. Intensity of the GCR line at 1074 cm-1 of 4-AVT as a function of the average particle size, material and wavelength of excitation laser radiation on: silicon (a); silicon oxide (b); glass (c) and foil (d)

Download (328KB)

Copyright (c) 2024 Russian Academy of Sciences