Influence of particle size on the microstructure and magnetic properties of nickel-zinc ferrite powder
- Authors: Nikolaev E.V.1, Lysenko E.N.1, Bobuyok S.1, Surzhikov A.P.1
- 
							Affiliations: 
							- National Research Tomsk Polytechnic University
 
- Issue: Vol 88, No 4 (2024)
- Pages: 638-644
- Section: Magnetic Phenomena and Smart Composite Materials
- URL: https://rjpbr.com/0367-6765/article/view/654711
- DOI: https://doi.org/10.31857/S0367676524040167
- EDN: https://elibrary.ru/QHBPBD
- ID: 654711
Cite item
Abstract
The influence of the dispersion of the particles of the synthesized nickel-zinc ferrite powder on its structural and magnetic properties is shown. Ferrite powder was produced using ceramic technology. The average particle size was varied using the mechanical activation method. According to X-ray diffraction analysis, laser diffraction and thermal analysis, regularities were established for the formation of the properties of nickel-zinc ferrite depending on the modes of mechanical activation.
Full Text
 
												
	                        About the authors
E. V. Nikolaev
National Research Tomsk Polytechnic University
							Author for correspondence.
							Email: nikolaev0712@tpu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050						
E. N. Lysenko
National Research Tomsk Polytechnic University
														Email: nikolaev0712@tpu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050						
S. Bobuyok
National Research Tomsk Polytechnic University
														Email: nikolaev0712@tpu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050						
A. P. Surzhikov
National Research Tomsk Polytechnic University
														Email: nikolaev0712@tpu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050						
References
- Guo J., Zhang H., He Z., Li S., Li Z. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 2491.
- Kurian M., Thankachan S. // Open Ceram. 2021. V. 8. Art. No. 100179.
- Rani R., Mujasam Batoo K., Sharma P. et al. // Ceram. Int. 2021. V. 47. P. 30902.
- Gauns Dessai P.P., Verenkar V.S. // J. Therm. Analyt. Calorim. 2020. V. 142. P. 1399.
- Kumar R., Barman P.B., Singh R.R. // Mater. Today Commun. 2021. V. 27. Art. No. 102238.
- Bao Y., Wen T., Samia A.C. et al. // J. Mater. Sci. 2016. V. 51. P. 513.
- Mandle U.M., Tigote R.M., Lohar K.S., Shinde B.L. // Mater. Today. Proceed. 2021. V. 47. P. 1974.
- Hergt R., Dutz S., Muller R., Zeisberger M. // J. Phys. Cond. Matter. 2006. V. 18. P. 2919.
- Song J., Gao Yu., Tan G. et al. // Ceram. Int. 2022. V. 48. P. 22896.
- Bajorek A., Berger C., Dulski M. // J. Phys. Chem. Solid. 2019. V. 129. P. 1.
- Kaur H., Goyal V. Singh J. et al. // Micro Nano Lett. 2019. V. 14. No. 12. P. 1229.
- Pedro V.V.R., Alves T.E.P., Swapnalin J. et al. // Mater. Chem. Phys. 2022. V. 284. Art. No. 126072.
- Astafyev A.L., Lysenko E.N., Surzhikov A.P. et al. // J. Therm. Analyt. Calorim. 2020. V. 142. P. 1775.
- Yang P., Liu Zh., Qi H. et al. // Ceram. Int. 2019. V. 45. P. 13685.
- Sherstyuk D.P., Starikov A. Yu., Zhivulin V.E. et al. // Ceram. Int. 2022. V. 48. P. 18124.
- Hu J., Ma Y., Kan X. et al. // J. Magn. Magn. Mater. 2020. V. 513. Art. No. 167200.
- Kumar S., Kumar P., Singh V. et al. // J. Magn. Magn. Mater. 2015. V. 379. P. 50.
- Abu-El-Fadl A., Hassan A.M., Mahmoud M.H. // J. Magn. Magn. Mater. 2019. V. 471. P. 192.
- Filipović S., Obradović N., Marković S. et al. // Sci. Sinter. 2018. V. 50. P. 409.
- Rauch H., Cui H., Knight K.P. et al. // Add. Manufact. 2022. V. 52. Art. No. 100179.
- Roger J., Avenel M., Lapuyade L. // J. Eur. Ceram. Soc. 2020. V. 40. P. 1859.
- Lopez G.P., Silvetti S.P., Urretaa S.E. // J. Alloys Compounds. 2010. V. 505. P. 808.
- Sukmarani G., Kusumaningrum R., Noviyanto A. et al. // J. Mater. Res. Tech. 2020. V. 9. P. 8497.
- Tanna A.R., Joshi H.H. // Indian. J. Phys. 2016. V. 90. P. 981.
- Nikolaeva S.A., Lysenko E.N., Nikolaev E.V., Ghyngazov S.A. // J. Therm. Analyt. Calorim. 2023. V. 148. 1687.
- Kulkarni A.B., Mathad S.N. // Int. J. Self. Propag. High Temp. Synth. 2018. V. 27. P. 37.
- Nasrin S., Khan S.M., Matin M.A. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. P. 10722.
- Nikolaev E.V., Lysenko E.N., Surzhikov A.P., Astafyev A.L. // J. Therm. Analyt. Calorim. 2023. V. 148. P. 1455.
- Hajalilou A., Hasim M., Abbasi M. et al. // J. Mater. Sci. Mater. Electron. 2015. V. 26. P. 7468.
- Nikolaev E.V., Lysenko E.N., Surzhikov A.P., Elkin V.D. // J. Therm. Analyt. Calorim. 2023. V. 148. P. 1581.
- Sherstyuk D.P., Starikov A. Yu., Zhivulin V.E. // Ceram. Int. 2021. V. 47. P. 12163.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



