Piezoelectric relaxation in piezoceramics in weak electric fields

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the processes of piezoelectric relaxation that occur in piezoelectric ceramics under the influence of weak constant electric fields. Precise measurements of the piezoresonance spectra of the ferroelectric ceramics of the PZT system at various directions of the applied constant electric field and polarization were performed using the method and program for the analysis of piezoelectric resonance for the radial and thickness resonant vibration modes of piezoceramic disks. A qualitative analysis of the time dependences of the real and imaginary parts of the piezoelectric constants of the studied piezoceramic disks obtained because of mathematical processing of sequentially measured piezoresonance spectra was carried out, and a physical interpretation of the results was proposed.

Sobre autores

I. Shvetsov

Institute of Physics, Southern Federal University

Autor responsável pela correspondência
Email: wbeg@mail.ru
Russia, 344090, Rostov-on-Don

N. Shvetsova

Institute of Physics, Southern Federal University

Email: wbeg@mail.ru
Russia, 344090, Rostov-on-Don

E. Petrova

Institute of Physics, Southern Federal University

Email: wbeg@mail.ru
Russia, 344090, Rostov-on-Don

D. Makarev

Institute of Physics, Southern Federal University

Email: wbeg@mail.ru
Russia, 344090, Rostov-on-Don

A. Rybyanets

Institute of Physics, Southern Federal University

Email: wbeg@mail.ru
Russia, 344090, Rostov-on-Don

Bibliografia

  1. Гриднев С.А. Ситников А.В., Стогней О.В., Калинин Ю.Е. Нелинейные явления в нано- и микрогетерогенных системах. Москва: БИНОМ. Лаборатория знаний, 2012. 351 с.
  2. IEEE Standard on piezoelectricity. ANSI/IEEE Std. 176-1987. N.Y.: The Institute of Electrical and Electronics Engineers, 1987.
  3. Rybianets A., Motsarenko T., Goland V., Kushkuley L. // Proc. USE2007 (Tsukuba, 2007). P. 1909.
  4. Esin A.A., Alikin D.O., Turygin A.P. et al. // J. Appl. Phys. 2017. V. 121. No. 7. Art. No. 074101.
  5. Turygin A.P., Alikin D.O., Abramov A.S. et al. // Ferroelectrics. 2017. V. 508. No. 1. P. 77.
  6. Shvetsova N.A., Shcherbinina S.A., Shvetsov I.A. et al. // Ferroelectrics. 2021. V. 576. No. 1. P. 100.
  7. Shvetsov I.A., Shvetsova N.A., Shcherbinina S.A. et al. // Ferroelectrics. 2021. V. 576. No. 1. P. 94.
  8. Alguero M., Alemany C., Pardo L., Gonzalez A.M. // J. Amer. Ceram. Soc. 2004. V. 87. No. 2. P. 209.
  9. Rybyanets A.N., Chang S.-H., Theerakulpisut S. // In: Advanced materials – studies and applications. N.Y.: Nova Science Publishers Inc., 2015. P. 147.
  10. https://www.tasitechnical.com/prap.
  11. Holland R. // IEEE Trans. Sonics Ultrason. 1976. V. 14. No. 1. P. 18.
  12. Smits J.G. // IEEE Trans. Sonics Ultrason. 1976. V. 23. No. 6. P. 393.
  13. Alemany C., Pardo L., Jimenez D. et al. // J. Physics D. 1994. V. 27. P. 148.
  14. Konstantinov G.M., Rybyanets A.N., Konstantinova Y.B. et al. // In: Advanced materials: manufacturing, physics, mechanics and applications. N.Y.: Springer Proc. Phys, 2016. P. 229.
  15. Shvetsova N.A., Lugovaya M.A., Shvetsov I.A. et al. // Proc. 2015 Int. Conf. “Physics, Mechanics of New Materials and Their Applications”. N.Y.: Nova Science Publishers Inc., 2016. P. 415.
  16. Zhao D., Thomas L., Gelinck G. et al. // Nature Commun. 2019. V. 10. No. 6. Art. No. 2547.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (978KB)
3.

Baixar (181KB)
4.

Baixar (159KB)
5.

Baixar (224KB)

Declaração de direitos autorais © И.А. Швецов, Н.А. Швецова, Е.И. Петрова, Д.И. Макарьев, А.Н. Рыбянец, 2023