Simulation of the dynamics of laser beams in an array of carbon nanotubes using the hydrodynamic approach
- Autores: Konobeeva N.N.1, Trofimov R.R.1, Belonenko M.B.1
- 
							Afiliações: 
							- Volgograd State University
 
- Edição: Volume 87, Nº 12 (2023)
- Páginas: 1763-1766
- Seção: Articles
- URL: https://rjpbr.com/0367-6765/article/view/654537
- DOI: https://doi.org/10.31857/S0367676523703040
- EDN: https://elibrary.ru/QKEFOV
- ID: 654537
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We simulated the propagation of a quasi-monochromatic laser beam in a medium with carbon nanotubes. Equations describing the dynamics of laser beams in an array of carbon nanotubes are obtained based on the hydrodynamic approach for the nonlinear Schrödinger equation. This equation is solved numerically using the smoothed particle method. The evolution of the beam is analyzed depending on the frequency of the electric field.
Palavras-chave
Sobre autores
N. Konobeeva
Volgograd State University
							Autor responsável pela correspondência
							Email: yana_nn@volsu.ru
				                					                																			                												                								Russia, 400062, Volgograd						
R. Trofimov
Volgograd State University
														Email: yana_nn@volsu.ru
				                					                																			                												                								Russia, 400062, Volgograd						
M. Belonenko
Volgograd State University
														Email: yana_nn@volsu.ru
				                					                																			                												                								Russia, 400062, Volgograd						
Bibliografia
- Iijima S. // Nature. 1991. V. 354. P. 56.
- Vasilevsky P.N., Savelyev M.S., Tolbin A.Yu. et al. // Photonics. 2023. V. 10(5). P. 537.
- Yamashita S. // APL Photonics. 2019. V. 4. Art. No. 034301.
- Wang J., Chen Y., Blau W.J. // J. Mater. Chem. 2009. V. 19. P. 7425.
- Kärtner F.X. Few-cycle laser pulse generation and its applications. Berlin: Springer, 2004.
- Konobeeva N.N., Fedorov E.G., Rosanov N.N. et al. // J. Appl. Phys. 2019. V. 126. Art. No. 203103.
- Архипов Р.М., Архипов М.В., Пахомов А.В. и др. // Письма в ЖЭТФ. 2021. Т. 113. № 4. С. 237; Arhipov R.M., Arhipov M.V., Pahomov A.V. et al. // JETP Lett. 2021. V. 113. No. 4. P. 242.
- Шахмуратов Р.Н. // Письма в ЖЭТФ. 2023. Т. 117. № 3. С. 193; Shakhmuratov R.N. // JETP Lett. 2023. V. 117. No. 3. P. 189.
- Pyatkov F., Khasminskaya S., Kovalyuk V. et al. // Beilstein J. Nanotechnol. 2017. V. 8. P. 38.
- Zhan J., Qin J., Tan S. et al. // Modern Instrum. 2018. V. 7. P. 24.
- Gingold R.A., Monaghan J.J. // Month. Notes. Royal. Astron. Soc. 1977. V. 181. P. 375.
- Вшивков В.А., Тарнавский Г.А., Неупокоев Е.В. // Автометрия. 2002. Т. 38(4). С. 74.
- Cabezón R.M., García-Senz D., Figueira J. // Astronom. Astrophys. 2017. V. 606. Art. No. A78.
- Shutov A., Klyuchantsev V. // J. Phys. Conf. Ser. 2019. V. 1268. Art. No. 012077.
- Елецкий А.В. // УФН. 1997. Т. 167. С. 945; Eletskii A.V. // Phys. Usp. 1997. V. 40. No. 9. P. 899.
- Эпштейн Э.М. // ФТТ. 1977. Т. 19. С. 3456.
- Ахмедиев Н.Н., Анкевич А. Солитоны. Нелинейные импульсы и пучки. М.: Физматлит, 2003.
- Mocz P., Succi S. // Phys. Rev. E. 2015. V. 91. Art. No. 053304.
- Bohm D. // Phys. Rev. 1952. V. 85. No. 2. P. 166.
- Потапов И.И., Решетникова О.В. // Комп. иссл. и модел. 2021 Т. 13. № 5. С. 979.
- Monaghan J.J., Lattanzio J.C. // Astron. Astrophys. 1985. V. 149. No. 1. P. 135.
- Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // Mod. Phys. Lett. B. 2013. V. 27. No. 7. Art. No. 1350045.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


