Options for Implementation of IR Thermography Diagnostics in a Tokamak with Reactor Technologies TRT
- Autores: Razdobarin A.G.1,2, Shubin Y.R.1, Bogachev D.L.2, Elets D.I.1,2, Medvedev O.S.1,2, Mukhin E.E.1, Snigirev L.A.1
- 
							Afiliações: 
							- Ioffe Institute, Russian Academy of Sciences
- Spectral-Tech
 
- Edição: Volume 50, Nº 4 (2024)
- Páginas: 509-520
- Seção: TOKAMAKS
- URL: https://rjpbr.com/0367-2921/article/view/668795
- DOI: https://doi.org/10.31857/S0367292124040113
- EDN: https://elibrary.ru/QCSKCO
- ID: 668795
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
AbstractOptions for implementing the IR thermography diagnostic system in a TRT facility are considered. Two variants of the optical scheme for measuring the temperature of the first wall and divertor targets are proposed: a wide-angle system combined with two divertor channels and a four-channel viewing system. The optical resolution of both systems and the levels of the collected signal are numerically simulated. On the basis of the calculations performed, conclusions are drawn about the compliance of the systems with the requirements for measuring the temperature of TRT plasma-facing elements. The sources of the temperature measurement error are considered, and the error caused by the reflection of radiation from structural plasma-facing elements by the surface under study is estimated. Calibration issues for IR thermography diagnostics are also discussed.
Palavras-chave
Sobre autores
A. Razdobarin
Ioffe Institute, Russian Academy of Sciences; Spectral-Tech
							Autor responsável pela correspondência
							Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194021; St. Petersburg, 194223						
Y. Shubin
Ioffe Institute, Russian Academy of Sciences
														Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194021						
D. Bogachev
Spectral-Tech
														Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194223						
D. Elets
Ioffe Institute, Russian Academy of Sciences; Spectral-Tech
														Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194021; St. Petersburg, 194223						
O. Medvedev
Ioffe Institute, Russian Academy of Sciences; Spectral-Tech
														Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194021; St. Petersburg, 194223						
E. Mukhin
Ioffe Institute, Russian Academy of Sciences
														Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194021						
L. Snigirev
Ioffe Institute, Russian Academy of Sciences
														Email: Aleksey.Razdobarin@mail.ioffe.ru
				                					                																			                												                	Rússia, 							St. Petersburg, 194021						
Bibliografia
- Chen M.W., Gong X. Z., Gan K. F., Wang L., Yuan Q. P., Wu K., Li K. D., Duan Y. M., Meng L. Y., Zhang B., Shu S. B., Zhang J. Y., Liu C., Liang R. R., Li C. J. and The EAST team // Nucl. Fusion. 2020. V. 60. P. 076009. doi: 10.1088/1741-4326/ab8c65.
- Guilhem D.// Fus. Eng. Des. 2005.V. 74(1) P. 879. doi: 10.1016/j.fusengdes.2005.08.021
- Eich T., Leonard A. W., Pitts R. A., Fundamenski W., Goldston R. J., Gray T. K., Herrmann A., Kirk A., Kallenbach A., Kardaun O., Kukushkin A. S., LaBombard B., Maingi R., Makowski M. A., Scarabosio A., Sieglin B., Terry J., Thornton A., ASDEX Upgrade Team and JET EFDA // Nucl. Fusion. 2013. V. 53. P. 093031. doi: 10.1088/0029-5515/53/9/093031.
- Houry M., Pocheau C., Aumeunier M-H., Balorin C., Blanckaert K., Corre Y., Courtois X., Ferlay F., Gaspar J., Gazzotti S., Grosjean A., Loarer Th., Roche H., Saille A., Vives S., the WEST Team // Fusion Eng. Des. 2019. V. 146A. P. 1104—1107. doi: 10.1016/j.fusengdes.2019.02.017.
- Hollmann E.M., Commaux N., Eidietis N. W., Lasnier C. J., Rudakov D. L., Shiraki D., Cooper C., Martin-Solis J.R., Parks P. B., Paz-Soldan C. // Phys. Plasmas. 2017. V. 24(6). 062505. doi: 10.1063/1.4985086.
- Guilhem D., Reichle R., Roche H. // QIRT Journal.2006. V.3. № 2.Р. 1.
- Aumeunier M.-H. et al // IEEE Trans. Plasma Sci. 2012.V.40.P.753
- M-H. Aumeunier et al. // Nuclear Materials and Energy. 2021.V. 26 .100879
- Раздобарин А.Г., Шубин Я. Р., Белокур А. А., Богачев Д. Л., Елец Д.И., Медведев О. С., Мухин Е. Е., Снигирев Л. А., Алексеенко И. В. // Физика плазмы.2024. Т. 50. С.
- Мазуль И.В., Гиниятулин Р. Н., Кавин А. А., Литуновский Н. В., Маханьков А. Н., Пискарев П. Ю., Танчук В. Н // Физика плазмы. 2021. Т. 47. № 12. С. 1103.
- Gaspar J. et al. // Nucl. Mat. and Energy. 2020. V.25.100851
- А. Г. Раздобарин, Ю. М. Гаспарян, Д. Л. Богачев, А. М. Дмитриев, Д. И Елец, А. Н. Коваль, Г. С. Курскиев, Е. Е. Мухин, Д. Г. Булгадарян, С. А. Крат, Е. Д. Маренков, И. В. Алексеенко// Физика плазмы. 2022. T. 48. № 12. С. 1216.
- Кащук Ю. А., Коновалов С. В., Красильников А. В. // Физика плазмы. 2022.T. 48. № 12. С. 1159.
- Litnovsky A. et al. // Journal of Nuclear Materials.2007. V. 363—365. 1395—1402.
- Razdobarin A. G. et al. // Nucl. Fusion. 2015. V. 55. Р. 093022.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
