Вклад окситоцина и дофамина в формирование нейронных кластеров в неокортексе, отображающих разномодальные сенсорные стимулы
- Авторы: Силькис И.Г.1
- 
							Учреждения: 
							- Институт высшей нервной деятельности и нейрофизиологии РАН
 
- Выпуск: Том 55, № 1 (2024)
- Страницы: 74-87
- Раздел: Статьи
- URL: https://rjpbr.com/0301-1798/article/view/676316
- DOI: https://doi.org/10.31857/S0301179824010074
- ID: 676316
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Унифицированный механизм формирования контрастных отображений разномодальных сенсорных стимулов в активности нейронов неокортекса предложен нами ранее. В основе контрастирования лежит разнонаправленный знак модификации эффективности сильных и слабых возбудительных входов к шипиковым клеткам стриатума (входной структуры базальных ганглиев) и последующая дофамин-зависимая реорганизации активности в параллельных цепях кора – базальные ганглии – таламус – кора. Окситоцин и дофамин (через Д1 рецепторы) могут улучшить контрастирование этих отображений, способствуя индукции длительной потенциации эффективность возбуждения нейронов коры, таламуса и гиппокампа, иннервирующих шипиковые клетки. Кроме того, окситоцин и дофамин могут улучшать контрастирование, способствуя увеличению отношения сигнал / шум в коре, гиппокампе и стриатуме. Предложен механизм увеличения отношения сигнал / шум, в основе которого лежит разнонаправленный знак длительной модификации эффективности моносинаптического возбудительного и дисинаптического тормозного входов, одновременно воздействующих на постсинаптический нейрон. Предлагаемые механизмы могут лежать в основе вклада окситоцина и дофамина в улучшение формирования и длительного поддержания активности в нейронных группах со сходными рецептивными полями, образующих колонки в первичной зрительной коре, тонотопическую карту в первичной слуховой коре, соматотопическую карту в соматосенсорной коре и распределенные кластеры в обонятельной пириформной коре. Эти механизмы отличаются от общепринятых механизмов формирования нейронных кластеров в коре со сходными рецептивными полями, базирующихся на афферентном и латеральном возбуждении и торможении, что не позволяет обеспечить специфичность и длительность эффектов. Понимание механизмов участия окситоцина и дофамина в обработке разномодальной сенсорной информации может быть полезным для разработки методов лечения некоторых нарушений социального поведения.
Полный текст
 
												
	                        Об авторах
И. Г. Силькис
Институт высшей нервной деятельности и нейрофизиологии РАН
							Автор, ответственный за переписку.
							Email: isa-silkis@mail.ru
				                					                																			                												                	Россия, 							117485, Москва						
Список литературы
- Силькис И.Г. Унифицированный постсинаптический механизм влияния различных нейромодуляторов на модификацию возбудительных и тормозных входов к нейронам гиппокампа (Гипотеза) // Успехи физиол. наук. 2002а. T. 33. № 1. C. 40.
- Силькис И.Г. Возможный механизм влияния нейромодуляторов и модифицируемого торможения на длительную потенциацию и депрессию возбудительных входов к основным нейронам гиппокампа // Журн. высш. нерв. деят. им. И.П. Павлова. 2002b. T. 52. № 4. C. 392.
- Силькис И.Г. Возможные механизмы участия субталамического ядра и связанных с ним структур в двигательных нарушениях, вызванных дефицитом дофамина // Успехи физиол. наук. 2005. Т. 36. № 2. С. 66.
- Силькис И.Г. Роль дофамин-зависимых перестроек активности в цепях кора – базальные ганглии – таламус – кора в зрительном внимании (гипотетический механизм) // Успехи физиол. наук. 2007. Т. 38. № 4. С. 21.
- Силькис И.Г. Механизмы влияния дофамина на функционирование базальных ганглиев и выбор движения (сопоставление моделей) // Нейрохимия. 2013. T. 30. № 4. C. 305. https://doi.org/10.7868/S1027813313030138
- Силькис И.Г. Механизмы взаимозависимого влияния префронтальной коры, гиппокампа и миндалины на функционирование базальных ганглиев и выбор поведения // Журн. высш. нерв. деят. им. И.П. Павлова. 2014. T. 64. № 1. C. 82. https://doi.org/10.7868/S0044467714010110
- Силькис И.Г. О роли базальных ганглиев в формировании рецептивных полей нейронов первичной слуховой коры и механизмы их пластичности // Успехи физиол. наук. 2015a. Т. 46. № 3. С. 60.
- Силькис И.Г. О роли базальных ганглиев в обработке сложных звуковых стимулов и слуховом внимании // Успехи физиол. наук. 2015b. T. 46. № 3. P. 76.
- Силькис И.Г. Роль базальных ганглиев, внимания и эмоций в перестройках рецептивных полей нейронов первичной слуховой коры и выборе движения при обучении (гипотетический механизм) // Журн. высш. нерв. деят. 2019. Т. 69. № 6. С. 657. https://doi.org/10.1134/S004446771906011X
- Силькис И.Г. О сходстве механизмов обработки обонятельной, слуховой и зрительной информации в ЦНС (гипотеза) // Нейрохимия. 2023. Т. 40. № 1, C. 35. https://doi.org/10.31857/S1027813323010193
- Albus K., Chao H.H., Hicks T.P. Tachykinins preferentially excite certain complex cells in the infragranular layers of feline striate cortex // Brain Res. 1992. V. 587. № 2. P. 353. https://doi.org/10.1016/0006-8993(92)91019-b.
- Angelucci A., Bressloff P.C. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons // Prog. Brain Res. 2006. V. 154. P. 93. https://doi.org/10.1016/S0079-6123(06)54005-1.
- Atencio C.A., Schreiner C.E. Columnar connectivity and laminar processing in cat primary auditory cortex // PLoS One. 2010. V. 5. № 3. P. e9521. https://doi.org/10.1371/journal.pone.0009521
- Atencio C.A., Schreiner C.E. Functional congruity in local auditory cortical microcircuits // Neuroscience. 2016. V. 316. P. 402. https://doi.org/10.1016/j.neuroscience.2015.12.057
- Bao S., Chan V.T., Merzenich M.M. Cortical remodeling induced by activity of ventral tegmental dopamine neurons // Nature. 2001. V. 412. № 6842. P. 79. https://doi.org/10.1038/35083586
- Beets I., Temmerman L., Janssen T., Schoofs L. Ancient neuromodulation by vasopressin/oxytocin-related peptides // Worm. 2013. V. 2. № 2. P. e24246. https://doi.org/10.4161/worm.24246
- Bracci E., Centonze D., Bernardi G., Calabresi P. Dopamine excites fast-spiking interneurons in the striatum // J. Neurophysiol. 2002. V. 87. № 4. P. 2190. https://doi.org/10.1152/jn.00754.2001
- Chalk M., Masset P., Deneve S., Gutkin B. Sensory noise predicts divisive reshaping of receptive fields // PLoS Comput. Biol. 2017. V. 13. № 6. P. e1005582. https://doi.org/10.1371/journal.pcbi.1005582
- Chang Y.S., Owen J.P., Desai S.S., Hill S.S., Arnett A.B., Harris J., Marco E.J., Mukherjee P. Autism and sensory processing disorders: Shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways // PLoS ONE. 2014. V. 9. № 7. P. e103038. https://doi.org/10.1371/journal.pone.0103038
- Chen L., Bohanick J.D., Nishihara M., Seamans J.K., Yang C.R. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling // J. Neurophysiol. 2007. V. 97. № 3. P. 2448. https://doi.org/10.1152/jn.00317.2006
- Choe H.K., Reed M.D., Benavidez N., Montgomery D., Soares N., Yim Y.S., Choi G.B. Oxytocin mediates entrainment of sensory stimuli to social cues of opposing valence // Neuron. 2015. V. 87. № 1. P. 152. https://doi.org/10.1016/j.neuron.2015.06.022
- Choi W.S., Machida C.A., Ronnekleiv O.K. Distribution of dopamine D1, D2, and D5 receptor mRNAs in the monkey brain: ribonuclease protection assay analysis // Mol. Brain Res. 1995. V. 31. № 1-2. P. 86. https://doi.org/10.1016/0169-328x(95)00038-t
- Cui G., Jun S,B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M., Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation // Nature. 2013. V. 494. № 7436. P. 238. https://doi.org/10.1038/nature11846
- Domes G., Sibold M., Schulze L., Lischke A., Herpertz S.C., Heinrichs M. Intranasal oxytocin increases covert attention to positive social cues // Psychol. Med. 2013. V. 43. № 8. P. 1747. https://doi.org/10.1017/S0033291712002565
- Fang L.Y., Quan R.D., Kaba H. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb // Neurosci. Lett. 2008. V. 438. № 2. P.133. https://doi.org/10.1016/j.neulet.2007.12.070
- Freeman S.M., Young L.J. Comparative perspectives on oxytocin and vasopressin receptor research in rodents and primates: translational implications // J. Neuroendocrinol. 2016. V. 28. № 4. P. 10.1111/jne.12382. https://doi.org/10.1111/jne.12382
- Friend D.M., Kravitz A.V. Working together: basal ganglia pathways in action selection // Trends Neurosci. 2014. V. 37. № 6. P. 301. https://doi.org/10.1016/j.tins.2014.04.004
- Fritz J., Elhilali M., Shamma S. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex // Hear. Res. 2005. V. 206. № 1-2. P. 159. https://doi.org/10.1016/j.heares.2005.01.015
- Fritz J., Shamma S., Elhilali M., Klein D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex // Nat. Neurosci. 2003. V. 6. № 11. P. 1216. https://doi.org/10.1038/nn1141
- Froemke R.C., Young L.J. Oxytocin, neural plasticity, and social behavior // Annu. Rev. Neurosci. 2021. V. 44. P. 359. https://doi.org/10.1146/annurev-neuro-102320-102847
- Gittis A.H., Nelson A.B., Thwin M.T., Palop J.J., Kreitzer A.C. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways // J. Neurosci. 2010. V. 30. № 6. P. 2223. https://doi.org/10.1523/JNEUROSCI.4870-09.2010
- Gombköto P., Rokszin A., Berényi A., Braunitzer G., Utassy G., Benedek G., Nagy A. Neuronal code of spatial visual information in the caudate nucleus // Neuroscience. 2011. V. 182. P. 225. https://doi.org/10.1016/j.neuroscience.2011.02.048
- Graziano M.S., Gross C.G. A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields // Exp. Brain Res. 1993. V. 97. № 1. P. 96. https://doi.org/10.1007/BF00228820
- Grinevich V., Stoop R. Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors // Neuron. 2018. V. 99. № 5. P. 887. https://doi.org/10.1016/j.neuron.2018.07.016
- Haber S.N. Corticostriatal circuitry // Dialogues Clin. Neurosci. 2016. V. 18. № 1. P. 7. https://doi.org/10.31887/DCNS.2016.18.1/shaber
- Haynes W.I., Haber S.N. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation // J. Neurosci. 2013. V. 33. № 11. P. 4804. https://doi.org/10.1523/JNEUROSCI.4674-12.2013
- Hicks T.P., Albus K., Kaneko T., Baumfalk U. Examination of the effects of cholecystokinin 26-33 and neuropeptide Y on responses of visual cortical neurons of the cat // Neuroscience. 1993. V. 52. № 2. P. 263. https://doi.org/10.1016/0306-4522(93)90155-9
- Hodos W., Butler A.B. Evolution of sensory pathways in vertebrates // Brain Behav. Evol. 1997. V. 50. № 4. P. 189. https://doi.org/10.1159/000113333
- Hofstetter S., Dumoulin S.O. Tuned neural responses to haptic numerosity in the putamen // Neuroimage. 2021. V. 238. P. 118178. https://doi.org/10.1016/j.neuroimage.2021.118178
- Hosp J.A., Hertler B., Atiemo C.O., Luft A.R. Dopaminergic modulation of receptive fields in rat sensorimotor cortex // Neuroimage. 2011. V. 54. № 1. P. 154. https://doi.org/10.1016/j.neuroimage.2010.07.029
- Huber D., Veinante P., Stoop R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala // Science. 2005. V. 308. № 5719. P. 245. https://doi.org/10.1126/science.1105636
- Isaacson J.S. Odor representations in mammalian cortical circuits // Curr. Opin. Neurobiol. 2010. V. 20. № 3. P. 328. https://doi.org/10.1016/j.conb.2010.02.004
- Kha H.T., Finkelstein D.I., Tomas D., Drago J., Pow D.V., Horne M.K. Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: single axon reconstructions and immunohistochemical study // J. Comp. Neurol. 2001. V. 440. № 1. P. 20. https://doi.org/10.1002/cne.1367
- Kirsch P., Esslinger C., Chen Q., Mier D., Lis S., Siddhanti S., Gruppe H., Mattay V.S., Gallhofer B., Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear in humans // J. Neurosci. 2005. V. 25. № 49. P. 11489. https://doi.org/10.1523/JNEUROSCI.3984-05.2005
- Kröner S., Krimer L.S., Lewis D.A., Barrionuevo G. Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons // Cereb. Cortex. 2007. V. 17. № 5. P. 1020. https://doi.org/10.1093/cercor/bhl012
- Li Y.T., Ma W.P., Pan C.J., Zhang L.I., Tao H.W. Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity // J. Neurosci. 2012. V. 32. № 12. P. 3981. https://doi.org/10.1523/JNEUROSCI.5514-11.2012
- Li L.Y., Xiong X.R., Ibrahim L.A., Yuan W., Tao H.W., Zhang L.I. Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex // Cereb. Cortex. 2015. V. 25. № 7. P. 782. https://doi.org/10.1093/cercor/bht417
- Lintas A., Silkis I. G., Albéri L., Villa A.E.P. Dopamine deficiency increases synchronized activity in the rat subthalamic nucleus // Brain Res. 2012. V. 1434. P. 142. https://doi.org/10.1016/j.brainres.2011.09.005
- Marlin B.J., Mitre M., D’amour J.A., Chao M.V., Froemke R.C. Oxytocin enables maternal behaviour by balancing cortical inhibition // Nature. 2015. V. 520. № 7548. P. 499. https://doi.org/10.1038/nature14402
- Martiros N., Kapoor V., Kim S.E., Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum’s olfactory tubercle // Elife. 2022. V. 11. P. e75463. https://doi.org/10.7554/eLife.75463
- Maubach K.A., Cody C., Jones R.S. Tachykinins may modify spontaneous epileptiform activity in the rat entorhinal cortex in vitro by activating GABAergic inhibition // Neuroscience. 1998. V. 83. № 4. P. 1047. https://doi.org/10.1016/s0306-4522(97)00469-7
- Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine // Nat. Rev. Neurosci. 2011. V. 12. № 9. P. 524. https://doi.org/10.1038/nrn3044
- Miller L.J., Nielsen D.M., Schoen S.A., Brett-Green B.A. Perspectives on sensory processing disorder: a call for translational research // Front. Integr. Neurosci. 2009. V. 3. P. 22. https://doi.org/10.3389/neuro.07.022.2009
- Mitre M., Marlin B.J., Schiavo J.K., Morina E., Norden S.E., Hackett T.A., Aoki C.J., Chao M.V., Froemke R.C. A distributed network for social cognition enriched for oxytocin receptors // J. Neurosci. 2016. V. 36. № 8. P. 2517. https://doi.org/10.1523/JNEUROSCI.2409-15.2016
- Moaddab M., Hyland B.I., Brown C.H. Oxytocin excites nucleus accumbens shell neurons in vivo // Mol. Cell Neurosci. 2015. V. 68. P. 323. https://doi.org/10.1016/j.mcn.2015.08.013
- Moore A.K., Wehr M. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency // J. Neurosci. 2013. V. 33. № 34. P. 13713. https://doi.org/10.1523/JNEUROSCI.0663-13.2013
- Murata K., Kanno M., Ieki N., Mori K., Yamaguchi M. Mapping of learned odor-induced motivated behaviors in the mouse olfactory tubercle // J. Neurosci. 2015. V. 35. № 29. P. 10581. https://doi.org/10.1523/JNEUROSCI.0073-15.2015
- Nagy A., Eördegh G., Norita M., Benedek G. Visual receptive field properties of excitatory neurons in the substantia nigra // Neuroscience. 2005. V. 130. № 2. P. 513. https://doi.org/10.1016/j.neuroscience.2004.09.052
- Nagy A., Paróczy Z., Norita M., Benedek G. Multisensory responses and receptive field properties of neurons in the substantia nigra and in the caudate nucleus // Eur. J. Neurosci. 2005. V. 22. № 2. P. 419. https://doi.org/10.1111/j.1460-9568.2005.04211.x
- Nakajima M., Görlich A., Heintz N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons // Cell. 2014. V. 159. № 2. P. 295. https://doi.org/10.1016/j.cell.2014.09.020
- Naskar S., Qi J., Pereira F., Gerfen C.R., Lee S. Cell-type-specific recruitment of GABAergic interneurons in the primary somatosensory cortex by long-range inputs // Cell Rep. 2021. V. 34. № 8. P. 108774. https://doi.org/10.1016/j.celrep.2021.108774
- Oettl L.L., Ravi N., Schneider M., Scheller M.F., Schneider P., Mitre M. et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing // Neuron. 2016. V. 90. №3. P. 609. https://doi.org/10.1016/j.neuron.2016.03.033
- Oettl L.L., Kelsch W. Oxytocin and olfaction // Curr. Top Behav. Neurosci. 2018. V. 35. P. 55. https://doi.org/10.1007/7854_2017_8
- Owen S.F., Tuncdemir S.N., Bader P.L., Tirko N.N., Fishell G., Tsien R.W. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons // Nature. 2013. V. 500. №7463. P. 458. https://doi.org/10.1038/nature12330
- Papaleonidopoulos V., Kouvaros S., Papatheodoropoulos C. Effects of endogenous and exogenous D1/D5 dopamine receptor activation on LTP in ventral and dorsal CA1 hippocampal synapses // Synapse. 2018. V.72. № 8. P. e22033. https://doi.org/10.1002/syn
- Parent A., Hazrati L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop // Brain Res. Rev. 1995. V. 20. № 1. P. 91. https://doi.org/10.1016/0165-0173(94)00007-c
- Pienkowski M., Harrison R.V. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex // J. Neurophysiol. 2005. V. 93. № 1. P. 454. https://doi.org/10.1152/jn.00569.2004
- Potts Y., Bekkers J.M. Dopamine increases the intrinsic excitability of parvalbumin-expressing fast-spiking cells in the piriform cortex // Front. Cell Neurosci. 2022. V. 16. P. 919092. https://doi.org/10.3389/fncel.2022.919092
- Puschmann S., Brechmann A., Thiel C.M. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning // Hum. Brain Mapp. 2013. V. 34. № 11. P. 2841. https://doi.org/10.1002/hbm.22107
- Ramanathan G., Cilz N.I., Kurada L., Hu B., Wang X., Lei S. Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors // Neuropharmacology. 2012. V. 63. № 7. P. 1218. https://doi.org/10.1016/j.neuropharm.2012.07.043
- Rosselet C., Zennou-Azogui Y., Xerri C. Nursing-induced somatosensory cortex plasticity: temporally decoupled changes in neuronal receptive field properties are accompanied by modifications in activity-dependent protein expression // J. Neurosci. 2006. V. 26. P. 10667. https://doi.org/10.1523/JNEUROSCI.3253-06.2006
- Ruggieri V. Autism. Neurobiological aspects // Medicina (B Aires). 2022. V. 82. Suppl. 3. P. 57
- Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. I. Modification rules for excitatory and inhibitory synapses in the striatum // Biosystems. 2000. V. 57. № 3. P. 187. https://doi.org/10.1016/s0303-2647(00)00134-9.
- Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia // Biosystems. 2001. V. 59. № 1. P. 7. https://doi.org/10. 1016/s0303-2647(00)00135-0
- Silkis I. A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing // Biosystems. 2007. V. 89. № 1–3. P. 227. https://doi.org/10.1016/j.biosystems.2006.04.020
- Stalter M., Westendorff S., Nieder A. Dopamine gates visual signals in monkey prefrontal cortex neurons // Cell Rep. 2020. V. 30. № 1. P. 164.e4. https://doi.org/10.1016/j.celrep.2019.11.082
- Stettler D.D., Axel R. Representations of odor in the piriform cortex // Neuron. 2009. V. 63. № 6. P. 854. https://doi.org/10.1016/j.neuron.2009.09.005
- Stoop R., Hegoburu C., van den Burg E. New opportunities in vasopressin and oxytocin research: a perspective from the amygdala // Annu. Rev. Neurosci. 2015. V. 38. P. 369. https://doi.org/10.1146/annurev-neuro-071714-033904
- Szydlowski S.N., Pollak Dorocic I., Planert H., Carlén M., Meletis K., Silberberg G. Target selectivity of feedforward inhibition by striatal fast-spiking interneurons // J. Neurosci. 2013. V. 33. № 4. P. 1678. https://doi.org/10.1523/JNEUROSCI.3572-12.2013
- Takahashi H., Funamizu A., Mitsumori Y., Kose H., Kanzaki R. Progressive plasticity of auditory cortex during appetitive operant conditioning // Biosystems. 2010. V. 101. № 1. P. 37. https://doi.org/10.1016/j.biosystems.2010.04.003
- Tantirigama M.L., Huang H.H., Bekkers J.M. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding // Proc. Natl. Acad. Sci. USA. 2017. V. 114. № 9. P. 2407. https://doi.org/10.1073/pnas.1620939114
- Tecuapetla F., Jin X., Lima S.Q., Costa R.M. Complementary contributions of striatal projection pathways to action initiation and execution // Cell. 2016. V. 166. № 3. P. 703. https://doi.org/10.1016/j.cell.2016.06.032
- Thiel C.M. Pharmacological modulation of learning-induced plasticity in human auditory cortex // Restor. Neurol. Neurosci. 2007. V. 25. № 3–4. P. 435.
- Uvnas-Moberg K., Handlin L., Petersson M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation // Front. Psychol. 2015. V. 5. P. 1529. https://doi.org/10.3389/fpsyg.2014.01529
- Valtcheva S., Froemke R.C. Neuromodulation of maternal circuits by oxytocin // Cell Tissue Res. 2019. V. 375. № 1. P. 57. https://doi.org/10.1007/s00441-018-2883-1
- White K.A, Zhang Y.F., Zhang Z., Bhattarai J.P., Moberly A.H., In ‘t Zandt E.E. et al. Glutamatergic neurons in the piriform cortex influence the activity of d1- and d2-type receptor-expressing olfactory tubercle neurons // J. Neurosci. 2019. V. 39. №48. P. 9546. https://doi.org/10.1523/JNEUROSCI.1444-19.2019
- Wilson D.A. Receptive fields in the rat piriform cortex // Chem. Senses. 2001. V. 26. №5. P. 577. https://doi.org/10.1093/chemse/26.5.577
- Xerri C., Stern J.M., Merzenich M.M. Alterations of the cortical representation of the rat ventrum induced by nursing behavior // J. Neurosci. 1994. V. 14. № 3. Pt. 2. P. 1710. https://doi.org/10.1038/nnl800
- Yao H., Li C.Y. Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex // Neuron. 2002. V. 35. № 3. P. 547. https://doi.org/10.1016/s0896-6273(02)00782-1
- Young L.J., Barrett C.E. Neuroscience. Can oxytocin treat autism? // Science. 2015. V. 347. № 6224. P. 825. https://doi.org/10.1126/science.aaa8120
- Young W.S., Song J. Characterization of oxytocin receptor expression within various neuronal populations of the mouse dorsal hippocampus // Front. Mol. Neurosci. 2020. V. 13. P. 40. https://doi.org/10.3389/fnmol.2020.00040
- Zaninetti M., Raggenbass M. Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale // Eur. J. Neurosci. 2000. V. 12. № 11. P.3975–3984. https://doi.org/10.1046/j.1460-9568.2000.00290.x
- Zheng J-J., Li S-J., Zhang X-D, Miao W-Y., Zhang D., Yao H., Yu X. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices //cNat. Neurosci. 2014. V. 17. № 3. P. 391. https://doi.org/10.1038/nn.3634
- Zhu Y., Qiao W., Liu K., Zhong H., Yao H. Control of response reliability by parvalbumin-expressing interneurons in visual cortex // Nat. Commun. 2015. V. 6. P. 6802. https://doi.org/10.1038/ncomms7802
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 



