Каналы-рецепторы TRPV1 в патогенезе воспалительных заболеваний кишечника
- Авторы: Дворникова К.А.1, Платонова О.Н.1, Быстрова Е.Ю.1
- 
							Учреждения: 
							- Лаборатория интероцепции, ФГБУН Институт физиологии им. И.П. Павлова РАН
 
- Выпуск: Том 54, № 2 (2023)
- Страницы: 56-68
- Раздел: Статьи
- URL: https://rjpbr.com/0301-1798/article/view/676384
- DOI: https://doi.org/10.31857/S0301179823020042
- EDN: https://elibrary.ru/PLCCMZ
- ID: 676384
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Воспалительные заболевания кишечника (Inflammatory Bowel Disease, IBD), включая язвенный колит (Ulcerative colitis, UC) и болезнь Крона (Crohn’s disease, CD), представляют собой группу хронических иммуноопосредованных заболеваний желудочно-кишечного тракта со сложной патофизиологией и патогенезом. Хотя точные патофизиологические и молекулярные механизмы, ассоциированные с IBD, изучены недостаточно, в последние годы получены данные об активации и изменении функций ноцицепторов и их сигнальных путей при воспалительном процессе и гипералгезии, в частности одна из ключевых ролей отводится каналу транзиторного рецепторного ванилоидного потенциала 1 (TRPV1). Наибольший уровень экспрессии TRPV1 характерен для сенсорных нейронов, однако он способен экспрессироваться и другими типами клеток, включая эпителиальные клетки кишки и мочевого пузыря, иммунореактивные клетки, такие как лимфоциты, тучные и дендритные клетки, клетки эндотелия сосудов и др. Все большее число исследований на различных экспериментальных моделях, включая человека, демонстрирует, что активация каналов суперсемейства TRP, к которому относится и TRPV1, может существенно усиливать висцеральную гиперчувствительность, опосредовать развитие воспаления и боли. Обзор обобщает представленные в литературе данные, раскрывающие структуру, функции и потенциальную роль в патогенезе IBD канала-рецептора TRPV1. Большое внимание уделено обсуждению сигнальных путей, лежащих в основе модуляции TRPV1. Можно надеяться, что дальнейшие исследования в данной области будут способствовать лучшему пониманию общих механизмов формирования воспалительной и болевой реакции и выявлению новых терапевтических мишеней для лечения IBD.
Ключевые слова
Об авторах
К. А. Дворникова
Лаборатория интероцепции, ФГБУН Институт физиологии им. И.П. Павлова РАН
							Автор, ответственный за переписку.
							Email: 691442@gmail.com
				                					                																			                												                								Россия, 199034, Санкт-Петербург						
О. Н. Платонова
Лаборатория интероцепции, ФГБУН Институт физиологии им. И.П. Павлова РАН
														Email: 691442@gmail.com
				                					                																			                												                								Россия, 199034, Санкт-Петербург						
Е. Ю. Быстрова
Лаборатория интероцепции, ФГБУН Институт физиологии им. И.П. Павлова РАН
														Email: 691442@gmail.com
				                					                																			                												                								Россия, 199034, Санкт-Петербург						
Список литературы
- Быстрова Е.Ю., Дворникова К.А., Платонова О.Н., Ноздрачев А.Д. Модулирующая роль гистамина в нейроиммунных взаимодействиях // Молекулярная медицина. 2021. Т. 19. № 3. С. 17. https://doi.org/10.29296/24999490-2021-03-03
- Филиппова Л.В. и др. Особенности локализации паттерн-распознающих и ванилоидных рецепторов в нервных сплетениях кишки крысы // Докл. Академии наук. Федеральное государственное бюджетное учреждение “Российская академия наук”. 2013. Т. 452. №. 3. С. 342. https://doi.org/10.1134/S0012496613050074
- Филиппова Л.В., Быстрова Е.Ю., Малышев Ф.С. и др. Экспрессия паттерн-распознающих рецепторов ноцицептивными метасимпатическими нейронами // Бюллетень экспериментальной биологии и медицины. 2015. Т. 159. № 2. С. 209. https://doi.org/10.1007/s10517-015-2934-5
- Филиппова Л.В., Федорова А.В., Ноздрачев А.Д. Механизм активации энтеральных ноцицептивных нейронов посредством взаимодействия рецепторов TLR4 и TRPV1 // Докл. Академии наук. Федеральное государственное бюджетное учреждение “Российская академия наук”, 2018. Т. 479. №. 1. С. 99. https://doi.org/10.7868/S0869565218010243
- Agrawal M. et al. Multiomics to elucidate inflammatory bowel disease risk factors and pathways // Nature Reviews Gastroenterology & Hepatology. 2022. T. 19. № 6. P. 399. https://doi.org/10.1038/s41575-022-00593-y
- Alsalem M. et al. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms // Brit. J. Pharmacol. 2013. V. 168. № 8. P. 1961. https://doi.org/10.1111/bph.12092
- Balemans D., Boeckxstaens G.E., Talavera K., Wouters M.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity // American J. Physiology-Gastrointestinal and Liver Physiology. 2017. V. 312. № 6. P. G635. https://doi.org/10.1152/ajpgi.00401.2016
- Beckers A.B. et al. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome // Alimentary Pharmacology & Therapeutics. 2017. V. 46. №. 10. P. 938. https://doi.org/10.1111/apt.14294
- Benítez-Angeles M., Morales-Lázaro S.L., Juárez-González E., Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms // International J. Molecular Sciences. 2020. V. 21. № 10. P. 3421. https://doi.org/10.3390/ijms21103421
- Bertin S. et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells // Nature Immunology. 2014. V. 15. № 11. P. 1055. https://doi.org/10.1038/ni.3009
- Bujak J.K. et al. Inflammation, cancer and immunity—implication of TRPV1 channel // Front. Oncol. 2019. V. 9. P. 1087. https://doi.org/10.3389/fonc.2019.01087
- Chen Y. et al. Transient receptor potential channels and inflammatory bowel disease // Front. Immunol. 2020. V. 11. P. 180. https://doi.org/10.3389/fimmu.2020.00180
- Clark R., Lee S.H. Anticancer properties of capsaicin against human cancer // Anticancer Research. 2016. V. 36. № 3. P. 837.
- Csekő K., Beckers B., Keszthelyi D., Helyes Z. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? // Pharmaceuticals. 2019. V. 12. №. 2. P. 48. https://doi.org/10.3390/ph12020048
- Donate-Macian P., Peralvarez-Marin A. Dissecting domain-specific evolutionary pressure profiles of transient receptor potential vanilloid subfamily members 1 to 4 // PLoS One. 2014. V. 9. № 10. P. e110715. https://doi.org/10.1371/journal.pone.0110715
- Duo L. et al. Gain of function of ion channel TRPV1 exacerbates experimental colitis by promoting dendritic cell activation // Molecular Therapy-Nucleic Acids. 2020. V. 22. P. 924. https://doi.org/10.1016/j.omtn.2020.10.006
- El-Salhy M. et al. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease // World J. Gastroenterol. 2017. V. 23. № 28. P. 5068. https://doi.org/10.3748/wjg.v23.i28.5068
- Flynn S., Eisenstein S. Inflammatory bowel disease presentation and diagnosis // Surgical Clinics. 2019. V. 99. № 6. P. 1051. https://doi.org/10.1016/j.suc.2019.08.001
- Green D.P. et al. A mast-cell-specific receptor mediates neurogenic inflammation and pain // Neuron. 2019. V. 101. № 3. P. 412. https://doi.org/10.1016/j.neuron.2019.01.012
- Hasenoehrl C., Taschler U., Storr M., Schicho R. The gastrointestinal tract–a central organ of cannabinoid signaling in health and disease // Neurogastroenterology & Motility. 2016. V. 28. № 12. P. 1765. https://doi.org/10.1111/nmo.12931
- Ho K.W., Ward N.J., Calkins D.J. TRPV1: a stress response protein in the central nervous system // Amer. J. Neurodegen. Dis. 2012. V. 1. № 1. P. 1.
- Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system // Pharmacology & Therapeutics. 2011. V. 131. № 1. P. 142. https://doi.org/10.1016/j.pharmthera.2011.03.006
- Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia // Europ. J. Pharmacol. 2004. V. 500. № 1(3). P. 231. https://doi.org/10.1016/j.ejphar.2004.07.028
- Holzmann B. Antiinflammatory activities of CGRP modulating innate immune responses in health and disease // Current Protein & Peptide Science. 2013. V. 14. № 4. P. 268. https://doi.org/10.2174/13892037113149990046
- Horie S., Tashima K., Matsumoto K. Gastrointestinal spice sensors and their functions // Yakugaku Zasshi: J. Pharmaceutical Society of Japan. 2018. V. 138. № 8. P. 1003. https://doi.org/10.1248/yakushi.17-00048-1
- Hubbard V.M., Cadwell K. Viruses, autophagy genes, and Crohn’s disease // Viruses. 2011. V. 3. № 7. P. 1281. https://doi.org/10.3390/v3071281
- Hwang D.Y., Kim S., Hong H.S. Substance-P ameliorates dextran sodium sulfate-induced intestinal damage by preserving tissue barrier function // Tissue Engineering and Regenerative Medicine. 2018. V. 15. № 1. P. 63. https://doi.org/10.1007/s13770-017-0085-7
- Iacomino G. et al. IBD: Role of intestinal compartments in the mucosal immune response // Immunobiology. 2020. V. 225. № 1. P. 151849. https://doi.org/10.1016/j.imbio.2019.09.008
- Iftinca M., Defaye M., Altier C. TRPV1-targeted drugs in development for human pain conditions // Drugs. 2021. V. 81. № 1. P. 7. https://doi.org/10.1007/s40265-020-01429-2
- Jeong K.Y., Seong J. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm // J. Neurological Sciences. 2014. V. 341. № 1–2. P. 58. https://doi.org/10.1016/j.jns.2014.03.054
- Julius D. TRP channels and pain // Ann. Rev. Cell Develop. Biol. 2013. V. 29. P. 355. https://doi.org/10.1146/annurev-cellbio-101011-155833
- Karthikeyan A. et al. Curcumin and its modified formulations on inflammatory bowel disease (IBD): The story so far and future outlook // Pharmaceutics. 2021. V. 13. № 4. P. 484. https://doi.org/10.3390/pharmaceutics13040484
- Lapointe T.K. et al. TRPV1 sensitization mediates postinflammatory visceral pain following acute colitis // American J. Physiology-Gastrointestinal and Liver Physiology. 2015. V. 309. №. 2. P. G87. https://doi.org/10.1152/ajpgi.00421.2014
- Li F.J. et al. Calcitonin gene-related peptide is a promising marker in ulcerative colitis // Digestive Dis. Scienc. 2013. V. 58. № 3. P. 686. https://doi.org/10.1007/s10620-012-2406-y
- Li L. et al. The impact of TRPV1 on cancer pathogenesis and therapy: a systematic review // Int. J. Biol. Scienc. 2021. V. 17. № 8. P. 2034. https://doi.org/10.7150/ijbs.59918
- Li Y. et al. Endocannabinoid activation of the TRPV1 ion channel is distinct from activation by capsaicin // J. Biol. Chem. 2021. V. 297. № 3. P. 1. https://doi.org/10.1016/j.jbc.2021.101022
- Liao M., Cao E., Julius D., Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy // Nature. 2013. V. 504. № 7478. P. 107. https://doi.org/10.1038/nature12822
- Luo C. et al. Upregulation of the transient receptor potential vanilloid 1 in colonic epithelium of patients with active inflammatory bowel disease // Int. J. Clin. Exp. Pathol. 2017. V. 10. № 11. P. 11335.
- Luo L. et al. Molecular basis for heat desensitization of TRPV1 ion channels // Nature Comm. 2019. V. 10. № 1. P. 1. https://doi.org/10.1038/s41467-019-09965-6
- Martinez G.Q., Gordon S.E. Multimerization of Homo sapiens TRPA1 ion channel cytoplasmic domains // PloS One. 2019. V. 14. № 2. P. e0207835. https://doi.org/10.1371/journal.pone.0207835
- Matsumoto K. et al. Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice // Laboratory Investigation. 2012. V. 92. № 5. P. 769. https://doi.org/10.1038/labinvest.2012.14
- Melnick C., Kaviany M. Thermal actuation in TRPV1: Role of embedded lipids and intracellular domains // J. Theor. Biol. 2018. V. 444. P. 38. https://doi.org/10.1016/j.jtbi.2018.02.004
- Mirsepasi-Lauridsen H.C. et al. Disease-specific enteric microbiome dysbiosis in inflammatory bowel disease // Front. Med. 2018. V. 5. P. 304. https://doi.org/10.3389/fmed.2018.00304
- Palkar R., Lippoldt E.K., McKemy D.D. The molecular and cellular basis of thermosensation in mammals // Curr. Opin. Neurobiol. 2015. V. 34. P. 14. https://doi.org/10.1016/j.conb.2015.01.010
- Quraishi M.N., Shaheen W., Oo Y.H., Iqbal T.H. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease // Clinical & Experimental Immunology. 2020. V. 199. № 1. P. 24. https://doi.org/10.1111/cei.13397
- Raboune S. et al. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation // Front. Cell. Neurosci. 2014. V. 8. P. 195. https://doi.org/10.3389/fncel.2014.00195
- Roda G. et al. Crohn’s disease // Nature Reviews Disease Primers. 2020. V. 6. № 1. P. 1. https://doi.org/10.1038/s41572-020-0156-2
- Rowan C. et al. Severe symptomatic primary CMV infection in inflammatory bowel disease patients with low population seroprevalence // Gastroenterology Research and Practice. 2018. V. 2018. № 1029401. P. 1 https://doi.org/10.1155/2018/1029401
- Senning E.N. et al. Regulation of TRPV1 ion channel by phosphoinositide (4, 5)-bisphosphate: the role of membrane asymmetry // J. Biol. Chem. 2014. V. 289. № 16. P. 10999. https://doi.org/10.1074/jbc.M114.553180
- Shuba Y.M. Beyond neuronal heat sensing: diversity of TRPV1 heat-capsaicin receptor-channel functions // Front. Cell. Neurosci. 2021. V. 14. P. 612480. https://doi.org/10.3389/fncel.2020.612480
- Sousa-Valente J., Brain S.D. A historical perspective on the role of sensory nerves in neurogenic inflammation // Seminars in Immunopathology. 2018. V. 40. № 3. P. 229. Springer Berlin Heidelberg. https://doi.org/10.1007/s00281-018-0673-1
- Uhlig H.H., Powrie F. Translating immunology into therapeutic concepts for inflammatory bowel disease // Ann. Rev. Immunol. 2018. V. 36. P. 755. https://doi.org/10.1146/annurev-immunol-042617-053055
- Vinuesa A.G. et al. Vanilloid Receptor-1 Regulates Neurogenic Inflammation in Colon and Protects Mice from Colon CancerTRPV-1 Protects from Colitis-Associated Cancer // Cancer Research. 2012. V. 72. № 7. P. 1705. https://doi.org/10.1158/0008-5472.CAN-11-3693
- Wouters M.M. et al. Histamine receptor H1–mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome // Gastroenterology. 2016. V. 150. № 4. P. 875. https://doi.org/10.1053/j.gastro.2015.12.034
- Wu W. et al. The CGRP/macrophage axis signal facilitates inflammation recovery in the intestine // Clinical Immunology. 2022. P. 109154. https://doi.org/10.1016/j.clim.2022.109154
- Wu Y. et al. TLR4 mediates upregulation and sensitization of TRPV1 in primary afferent neurons in 2, 4, 6-trinitrobenzene sulfate-induced colitis // Molecular Pain. 2019. V. 15. P. 1744806919830018. https://doi.org/10.1177/1744806919830018
- Xiao T., Sun M., Kang J., Zhao C. Transient Receptor Potential Vanilloid1 (TRPV1) Channel Opens Sesame of T Cell Responses and T Cell-Mediated Inflammatory Diseases // Front. Immunol. 2022. P. 2205. https://doi.org/10.3389/fimmu.2022.870952
- Yang F. et al. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel // Nat. Chem. Biol. 2015. V. 11. №. 7. P. 518. https://doi.org/10.1038/nchembio.1835
- Yang M. et al. Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis // Molecular Pain. 2017. V. 13. P. 1744806917726416. https://doi.org/10.1177/1744806917726416
- Yue W.W.S. et al. TRPV1 drugs alter core body temperature via central projections of primary afferent sensory neurons // Elife. 2022. V. 11. P. e80139. https://doi.org/10.7554/eLife.80139
- Zhang T. et al. NF-κB signaling in inflammation and cancer // MedComm. 2021. V. 2. №. 4. P. 618. https://doi.org/10.1002/mco2.104
- Zhang Y.Z., Li Y.Y. Inflammatory bowel disease: pathogenesis // World J. Gastroenterology: WJG. 2014. V. 20. № 1. P. 91. https://doi.org/10.3748/wjg.v20.i1.91
- Zhuang H. et al. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway // Front. Immunol. 2021. V. 12. P. 649463. https://doi.org/10.3389/fimmu.2021.649463
- Zielińska M. et al. Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases // Inflammatory Bowel Diseases. 2015. V. 21. № 2. P. 419. https://doi.org/10.1097/MIB.0000000000000234
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 



