Solubility of rare earth oxides in chloride, chloride-fluoride and fluoride melts of alkali and alkaline earth metals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This paper presents a review of data on the solubility of rare earth oxides in halide melts of alkali and alkaline earth metals. The highest solubility of rare earth oxides is observed in fluoride melts, the lowest – in chloride melts. There are very few works devoted to the study of the solubility of rare earth oxides in mixed chloride-fluoride melts. The solubility of rare earth oxides decreases in the series La-Ce-Pr-Nd-Gd. The greatest number of works are devoted to the study of the solubility of neodymium, lanthanum and cerium oxides. There are practically no data on the solubility of “heavy” rare earth oxides (from Tb to Lu) in halide melts.

Texto integral

Acesso é fechado

Sobre autores

S. Zhuk

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: zhuk@ihte.ru
Rússia, Yekaterinburg

M. Vlasov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: zhuk@ihte.ru
Rússia, Yekaterinburg

Bibliografia

  1. Gupta C.K. Extractive metallurgy of rare earths. International Materials Reviews, 1992, 37(1): 197–248.
  2. Goonan T.G. Rare earth elements – End use and recyclability. U.S. Geological Survey Scientific Investigations Report. – 2011.
  3. Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 2019, 10(4): 1285–1303.
  4. Hong F. Rare Earth: Production, trade and Demand. Journal of Iron and Steel Research International, 2006, 13(3): p. 33–38.
  5. Abbasalizadeh A. Use of iron reactive anode in electrowinning of neodymium from neodymium oxide. Electrochimica Acta, 2019, 310: 146–152.
  6. Kushkhov Kh.B. Electrochemical synthesis of nanosized powders of neodymium and praseodymium hexaborides and ternary compounds based on neodymium (praseodymium), boron and iron group metals from chloride-fluoride melts. Powder Metallurgy аnd Functional Coatings, 2014, 1: 3–8.
  7. Inv. 2540277 RF Int.C1 C01B 35/04 Electrolytic method of obtaining nanosized cerium hexaboride powder / Kushkhov Kh. B. [etc.], RF; Proprietor: Federal’noe gosudarstvennoe bjudzhetnoe obrazovatel’noe uchrezhdenie vysshego (45) Date of publication: 10.02.2015 Bull. № 4 Mail address: 360004, KBR, g.Nal’chik, ul. Chernyshevskogo, 173, Patentnyj otdel KBGU professional’nogo obrazovanija KabardinoBalkarskij gosudarstvennyj universitet im. Kh.M. Berbekova (KGBU) (RU) – filing 27.09.2013; publication 10.02.2013.
  8. Inv. 2781278 RF Int.C1 С01В 35/04 Electrochemical method for obtaining microdisperse powders of lanthanide group metal hexaborides doped with calcium / Filatov E. S. [etc.] Federalnoe gosudarstvennoe biudzhetnoe uchrezhdenie nauki Institut vysokotemperaturnoi elektrokhimii Uralskogo otdeleniia Rossiiskoi akademii nauk (IVTE UrO RAN) (RU) – filing 17.12.2021; publication 11.10.2022.
  9. Kaneko A. ChemInform Abstract: electrochemistry of rare Earth fluoride Molten Salts. ChemInform, 1993, 24: 44-46.
  10. Castrillejo Y. Solubilization of rare earth oxides in the eutectic LiCl–KCl mixture at 450°C and in the equimolar CaCl2–NaCl melt at 550°C. Journal of Electroanalytical Chemistry, 2003, 545: 141–157.
  11. Yan Y. The solubility of rare Earth with variable Valent and electrochemical Behavior in LiCl–KCl–AlCl3 Melts. Energy Procedia, 2013, 39: 408–414.
  12. Raiman S.S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts. Journal of Nuclear Materials, 2018, 511: 523-535.
  13. Sridharan K. Corrosion in Molten Salts. Molten Salts Chemistry, 2013, p. 241-267.
  14. Guo S. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Progress in Materials Science, 2018, 97: 448-487.
  15. Gourishankar K.V. Thermodynamics of mixed oxide compounds, Li2O-Ln2O3 (Ln=Nd or Ce). Metallurgical and Materials Transactions B, 1997, 28: 1103–1110.
  16. Kato T. Solubility of Pu and rare-earths in LiCl-Li2O melt. Radiochimica Acta, 2009, 97: 183–186.
  17. Korzun I.V. Thermal analysis of the oxide–chloride systems GdCl3–Gd2O3 and GdCl3–KCl–Gd2O3. Journal of Thermal Analysis and Calorimetry, 2021, 144: 1343–1349.
  18. Chukhvantsev D.O. Electrochemical synthesis of Rare-earth Hexaborides in Chloride–oxide Melts. Inorganic Materials, 2023, 59: 1356–1362.
  19. Castrillejo Y. Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides. Journal of Electroanalytical Chemistry, 2002, 522: 124–140.
  20. Shchetinskiy A.V. Interaction of neodymium Containing chloride Melts with oxygen Species. ECS Meeting Abstracts, 2018, 53: 1848–1848.
  21. Cho Y.J. Characteristics of oxidation Reaction of Rare-earth chlorides for precipitation in LiCl-KCl molten Salt by oxygen Sparging. Journal of Nuclear Science and Technology, 2006, 43: 1280–1286.
  22. Ivanov A.B. Solubility of REM oxides in Chloride–fluoride and fluoride Melts. Russian Metallurgy (Metally), 2022, 2: 65–68.
  23. Porter B. Determination of Oxide Solubility in Molten Fluorides. U.S. Department of the Interior, Bureau of Mines, Washington, DC, 1961.
  24. Bratland D. On the possible electrowinning of Yt-Al alloys. The solubility of yttria and of alumina in molten mixtures of yttrium fluoride and lithium fluoride. Light Metals, 1976, 1: 183–201.
  25. R.G. Reddy. Solubility and thermodynamic properties of Y2O3 in LiF-YF3 melts. Metallurgical and Materials Transactions B, 1994, 25: 91–96.
  26. Zhu X. Solubility of RE2O3 (RE = la and Nd) in light rare earth fluoride molten salts. Journal of Rare Earths, 2018, 36: 765–771.
  27. Pshenichny R.N. Interaction of rare-earth oxides with binary molten mixtures of zirconium and alkali metal fluorides. Russian Journal of Inorganic Chemistry, 2012, 57: 115–119.
  28. Stefanidaki E. Oxide solubility and raman spectra of NdF3–LiF–KF–MgF2–Nd2O3 melts. Journal of the Chemical Society, Dalton Transactions, 2002, р. 2302–2307.
  29. Ambrová M. On the solubility of lanthanum oxide in molten alkali fluorides. Journal of Thermal Analysis and Calorimetry, 2008, 91: 569–573.
  30. Remazeilles C. In-situ electrochemical oxide monitoring in LiF-NdF3-Nd2O3: application to Nd2O3 solubility determination. Journal of Electroanalytical Chemistry, 2021, 893: 115334.
  31. Takeda O. Solubilities of RE2O3 in REF3-LiF (RE = Nd, Dy) at 1473 K. Journal of Sustainable Metallurgy, 2022, 8: 1498–1508.
  32. Du S. Solubility of rare earth oxides in alkali and alkali-earth metal fluoride melts. Chinese Rare Earths, 1987, 19878(2): 59–62.
  33. Wu W. Nd2O3 solubility in fluoride melt. Chinese Rare Earths, 1991, 12(3): 34–37.
  34. Dewing E.W. The chemistry of solutions of CeO2 in cryolite melts. Metallurgical and Materials Transactions B, 1995, 26: 81–86.
  35. Yang Q. Electrochemical separation of lanthanum Oxide in molten FLiNaK Salt. Nuclear Technology, 2020, 206: 1769–1777.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. Dependence of the content of neodymium and cerium in the LiCl-Li2O melt on the concentration of lithium oxide.

Baixar (171KB)
3. Fig. 2. Dependence of the content of REM in the melt upon the combined dissolution of oxides of the corresponding REM in the melt LiCl-Li2O.

Baixar (110KB)
4. Fig. 3. Sections of phase diagrams for melts: a) GdCl3–Gd2O3 and b) GdCl3–KCl–Gd2O3.

Baixar (97KB)
5. 4. Dependence of the neodymium content in melts of mixtures of halides saturated with neodymium oxide on the reverse temperature.

Baixar (130KB)
6. Fig. 5. Influence of temperature on the content of REM in CaCl2-based melts (80mol.%)-CaF2(20 mol.%).

Baixar (89KB)
7. 6. Dependence of the solubility of yttrium oxide in LiCl-YF3-based melts.

Baixar (126KB)
8. 7. Dependence of the solubility of lanthanum oxide and neodymium oxide in REF3-LiF melts (RE=La and Nd) on the content of lanthanum and neodymium fluoride, respectively.

Baixar (132KB)
9. 8. Dependence of solubility of oxides of holmium (1), samarium (2) and lanthanum (3) on temperature in melts of LiF-ZrF4 (a), NaF-ZrF4 (b) and KF-ZrF4 (c).

Baixar (180KB)
10. 9. Dependence of the solubility of neodymium oxide in the melt NdF3-LiF-MgF2 depending on the content of magnesium fluoride in the melt: 1 – 15 mol.% NdF3 at 1073 K, 2 – 15 mol.% NdF3 at 1133 K, 3 – 30 mol.% NdF3 at 1133 K.

Baixar (71KB)
11. Fig. 10. Sections of phase diagrams of mixtures of melts of alkali metal fluorides with lanthanum oxide.

Baixar (171KB)
12. 11. The result of the analysis of literature data on the solubility of REE oxides in halides.

Baixar (291KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024