Термодинамическая оценка режимов получения синтез-газа при высокотемпературной конверсии отработанного масла

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проведена термодинамическая оценка условий получения синтез-газа при высокотемпературной конверсии отработанных масел с помощью метода минимизации свободной энергии Гиббса. Определены оптимальные условия для максимальной концентрации водорода при образовании минимального количества кокса. Расчеты равновесного состава продуктов выполнены при атмосферном давлении с варьированием коэффициента избытка топлива и количества паров воды. Результаты показывают, что оптимальными условиями при паровоздушной конверсии отработанного масла являются следующие: коэффициент избытка топлива, равный 3.5, и мольное отношение паров воды к кислороду, равное 0.2. При этих условиях не происходит коксообразование, а концентрации водорода и монооксида углерода в газе равняются 27.5 и 28.4% соответственно.

Полный текст

Доступ закрыт

Об авторах

М. В. Цветков

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Автор, ответственный за переписку.
Email: tsvetkovmv@gmail.com
Россия, Черноголовка

Д. Н. Подлесный

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: tsvetkovmv@gmail.com
Россия, Черноголовка

Ю. Ю. Цветкова

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: tsvetkovmv@gmail.com
Россия, Черноголовка

М. В. Салганская

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: tsvetkovmv@gmail.com
Россия, Черноголовка

А. Ю. Зайченко

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: tsvetkovmv@gmail.com
Россия, Черноголовка

В. М. Кислов

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: tsvetkovmv@gmail.com
Россия, Черноголовка

Е. А. Салганский

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: tsvetkovmv@gmail.com
Россия, Черноголовка

Список литературы

  1. Holechek J. L., Geli H. M., Sawalhah M. N., Valdez R. // Sustainability. 2022. V. 14. № 8. P. 4792. https://doi.org/10.3390/su14084792
  2. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48. https://doi.org/10.31857/S0207401X23120130
  3. Асеева Р.М., Круглов Е.Ю., Кобелев А.А. и др. // Хим. физика. 2024. Т. 43. № 5. С. 47. https://doi.org/10.31857/S0207401X24050068
  4. Kalak T. // Energies. 2023. V. 16. № 4. P. 1783. https://doi.org/10.3390/en16041783
  5. Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
  6. Li H., Feng Z., Ahmed A. T. et al. // J. Clean. Prod. 2022. V. 334. P. 130230. https://doi.org/10.1016/j.jclepro.2021.130230
  7. Singhabhandhu A., Tezuka T. // Energy. 2010. V. 35. № 6. P. 2544. https://doi.org/10.1016/j.energy.2010.03.001
  8. Wang Y., Yang Q., Ke L. et al. // Fuel. 2021. V. 283. 119170. https://doi.org/10.1016/j.fuel.2020.119170
  9. Lam S.S., Liew R.K., Jusoh A. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 741. https://doi.org/10.1016/j.rser.2015.09.005
  10. Su G., Ong H.C., Mofijur M., Mahlia T.I., Ok Y.S. // J. Hazard. Mater. 2022. V. 424. P. 127396. https://doi.org/10.1016/j.jhazmat.2021.127396
  11. Mittelbach M. // Eur. J. Lipid Sci. Technol. 2015. V. 117. № 11. P. 1832. https://doi.org/10.1002/ejlt.201500125
  12. Widodo S., Ariono D., Khoiruddin K., Hakim A.N., Wenten I.G. // Environ. Prog. Sustain. Energy. 2018. V. 37. № 6. P. 1867. https://doi.org/10.1002/ep.13011
  13. Zhao N., Li B., Chen D. et al. // Waste Manage. 2020. V. 104. P. 20. https://doi.org/10.1016/j.wasman.2020.01.007
  14. Akhmetshin M.R., Nyashina G.S., Romanov D.S. // Chem. Petrol. Eng. 2021.V. 56. № 9. P. 846. https://doi.org/10.1007/s10556-021-00851-x
  15. Chen C.Y., Lee W.J., Mwangi J.K. et al. // Aerosol Air Qual. Res. 2017. V. 17. № 3. P. 899. https://doi.org/10.4209/aaqr.2016.09.0394
  16. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
  17. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2023. Т. 42. № 9. С. 39. https://doi.org/10.31857/S0207401X23090042
  18. Кислов В.М., Цветкова Ю.Ю., Цветков М.В. и др. // Физика горения и взрыва. 2023. Т. 59. № 2. С. 83. https://doi.org/10.15372/FGV20230210
  19. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
  20. Салганский Е.А., Цветков М.В., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 11. C. 44. https://doi.org/10.1134/S1990793122060100
  21. Polianczyk E., Tarasov G., Zaichenko A. // E3S Web Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
  22. Цветкова Ю.Ю., Кислов В.М., Пилипенко Е.Н., Салганская М.В., Цветков М.В. // Хим. физика. 2024. Т. 43. № 7. С. 89. https://doi.org/10.31857/S0207401X24070097
  23. Arriagada A., Mena R., Ripoll N. et al. // Chem. Eng. J. 2024. V. 495. 153011. https://doi.org/10.1016/j.cej.2024.153011
  24. Кислов В.М., Цветкова Ю.Ю., Пилипенко Е.Н., Репина М.А., Салганская М.В. // Хим. физика. 2023. Т. 42. № 3. С. 16. https://doi.org/10.31857/S0207401X2303007X
  25. Кислов В.М., Глазов С.В., Салганский Е.А., Колесникова Ю.Ю., Салганская М.В. // Физика горения и взрыва. 2016. Т. 52. С. 320. https://doi.org/10.1134/S0010508216030102
  26. Салганская М.В., Глазов С.В., Салганский Е.А. и др. // Хим. физика. 2008. Т. 27. № 1. С. 20. https://doi.org/10.1134/S1990793108010119
  27. Rocha C., Soria M.A., Madeira L.M. // J. Energy Inst. 2019. V. 92. № 5. P. 1599. https://doi.org/10.1016/j.joei.2018.06.017
  28. Noureddine H., Nahla F., Zouhour K., Marie-Noëlle P. // Energy Convers. Manag. 2013. V.70. P.174. https://doi.org/10.1016/j.enconman.2013.03.009
  29. Xu J., Peng Z., Rong S. et al. // Fuel. 2021. V. 306. 121767. https://doi.org/10.1016/j.fuel.2021.121767
  30. Трусов Б.Г. // Матер. XIV Междунар. конф. по хим. термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
  31. Chen Y., Tan H., Yan M. et al. // Sustain. Energy Technol. Assessments. 2024. V. 70. 103956. https://doi.org/10.1016/j.seta.2024.103956
  32. Udoetuk E.N., Olatunbosun B.E., Adepojua T.F., Mayen I.A., Babalola R. // S. Afr. J. Chem. Eng. 2018. V. 25. № 1. P.169. https://doi.org/10.1016/j.sajce.2018.05.002
  33. Li C., Sayaka I., Chisato F., Fujimoto K. // Appl. Catal. A: Gen. 2016. V. 509. P. 123. https://doi.org/10.1016/j.apcata.2015.10.028

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимости объемной доли полученных соединений (V) и адиабатической температуры горения (T) от стехиометрического коэффициента избытка топлива (φ) для воздушной конверсии отработанного масла. Кривые: 1 – H2, 2 – CO, 3 – H2O, 4 – CO2, 5 – температура.

Скачать (394KB)
3. Рис. 2. Зависимости мольной доли полученных соединений (V) от температуры (T) при φ = 3.5 для воздушной конверсии отработанного масла. Кривые: 1 – H2, 2 – CO, 3 – H2O, 4 – CO2, 5 – C (тв.).

Скачать (388KB)
4. Рис. 3. Зависимости мольной доли продуктов (V) и адиабатической температуры горения (T) от соотношения [H2O]/[O2] при φ = 3.5 для паровоздушной конверсии отработанного масла. Кривые: 1 – H2, 2 – CO, 3 – H2O, 4 – CO2, 5 – температура, 6 – C (тв.).

Скачать (431KB)

© Российская академия наук, 2025