Low-melting hybrid thermoplastics of ammonium polyphosphate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the interaction of high-molecular ammonium polyphosphate with polyethylene polyamine, thermoplastic polymers with Tg = 46.3–50.7°C, Tsoft= 43–92°C, Tflow= 85–152°C are obtained. Thermal, heat resistance, moisture resistance, and the degree of crystallinity depending on the concentration of polyethylene polyamine are measured. The bending strength of polymers and reinforced composites is measured. A chemical scheme for the formation of a polycomplex is proposed and its structure is considered.

Full Text

Restricted Access

About the authors

E. V. Stegno

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ajushaulov@yandex.ru
Russian Federation, Moscow

V. Bychkov

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ajushaulov@yandex.ru
Russian Federation, Moscow

N. A. Abramova

“Raduga” State Engineering Design Bureau JSC named after A.Y. Bereznyak

Email: ajushaulov@yandex.ru
Russian Federation, Dubna

A. V. Grachev

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ajushaulov@yandex.ru
Russian Federation, Moscow

V. M. Lalayan

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ajushaulov@yandex.ru
Russian Federation, Moscow

A. Yu. Shaulov

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: ajushaulov@yandex.ru
Russian Federation, Moscow

A. A. Berlin

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ajushaulov@yandex.ru
Russian Federation, Moscow

References

  1. Urman K., Otaigbe J.U. // Prog. Polym. Sci. 2007. V. 32. P. 1462.
  2. Kobayshi N., Mori T., Suetsugiu T. et al. // J. Ceram. Soc. Jpn. 2008. V. 116 (1356). P. 875. https://doi.org/10.2109/jcersj2.116.875
  3. Shaulov A.Yu., Berlin A.A. // Recent Res. Devel. Polym. Sci. 2012. P. 21.
  4. Lalayan V.M., Stegno E.V., Nikitin A.V. et al. // Polym. Sci. B. 2015. V. 57. P. 26; https://doi.org/10.7868/S230811391501009Х
  5. Nechvolodova E.M., Sakovich R.A., Grachev A.V., TkachenkoL.A., Shaulov A.Yu. // Russ. J. Phys. Chem. B. 2020. V. 14. № 2. P. 318. https://doi.org/10.1134/S1990793120020116
  6. Korotkova Yu.A., Shaulov A.Yu., Grachev A.V. et al. // All Materials. Encyclopedic Reference. 2019. V. 8. P. 2. https://doi.org/10.1134/1994-6260-2019-0-8-2-6
  7. Lalayan V.M., Stegno E.V., Grachev A.V. et al. // Rep. Academ. Sci. 2016. V. 6. P. 6.
  8. Lalayan V.M., Stegno E.V., Grachev A.V. et al. // Rep. Academ. Sci. 2017. V. 1. P. 2.
  9. Shaulov A.Yu., Sakovich R.A., Grachev A.V. et al. // High-molecular Compounds. B. 2020. V. 62. P. 395. https://doi.org/10.31857/S2308113920050125
  10. Shaulov A., Addiego F., Federic C.E. et al. // Materials. 2021. V. 14(4). № 969. https://doi.org/10.3390/ma14040969
  11. Pavlushkin N.M., Zhuravlev A.K. Lowsoftening Glassses. Moscow: Energiya, 1970.
  12. Tick A. // Phys. Chem. Glasses. 1984. V. 25. № 6. Р. 149.
  13. Xu X.J., Day D.E. // Phys. Chem. Glasses. 1990. V. 31. № 5. P. 183.
  14. Xu X.J., Day D.E., Brow R.K., Callahan P.M. // Phys. Chem. Glasses. 1995. V. 36. № 6. P. 264.
  15. Shaw C.M., Shelb J.E. // Phys. Chem. Glasses. 1988. T. 29. P. 87.
  16. Dima V., Balta P., Eftimie M., Ispas V. // J. Optoelectron. Adv. Mater. 2006. V. 8. P. 2126.
  17. Maeder Th. // Intern. Mater. Rev. 2012. V. 58. P. 3.
  18. Mazurin O.V., Streltsina M.V., Shvayko-Shvaykovskaya T.P. Properties of Glasses and Glass-forming Melts. Reference Book. Moscow: Khimiya, 1975 [in Russian].
  19. Shaulov A.Yu., Vladimirov L.V., Avramenko N.V., Grachev A.V., Parfenova A.M. // Russ. Chem. Bull. 2022. V. 71. № 10. P. 2103. https://doi.org/10.1007/s11172-022-3633-9
  20. Prodan E.A., Prodan L.I., Ermolenko H.F. Tripolyphosphates and Their Application. Minsk: Nauka i Tekhnika, 1969 [in Russian].
  21. Nenakhov S.A., Pimenova V.P. // Fire and Explosion Safety. 2010. V. 19. P. 11.
  22. Sakovich R.A., Shaulov A.Yu., Nechvolodova E.М., Tkachenko L.A. // Russ. J. Phys. Chem. B. 2020. V. 14. № 3. P. 516. https://doi.org/10.31857/S0207401Х2005009Х
  23. Nechvolodova E.M., Sakovich R.A., Grachev A.V. et al. // Russ. J. Phys. Chem. B. 2017. V. 11. № 3. P. 499. https://doi.org/10.7868/S0207401Х17050077
  24. Nechvolodova E.M., Sakovich R.A., Grachev A.V. et al. // Russ. J. Phys. Chem. B. 2017. V. 11. № 5. P. 839. https://doi.org/10.7868/S0207401Х17090072

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (36KB)
3. Fig. 1. Temperature dependence of mass loss of PFA samples (1), PFA/PEPA in a mass ratio of 1:0.3 (2), PEPA (3). Synthesis conditions: T = 150 °C, holding for 1 hour.

Download (84KB)
4. Fig. 2. Thermomechanical curves of PFA and PFA/PEPA composites in a mass ratio of 1:0.3, obtained at different synthesis temperatures. 1 – 106 °C, 2 – 120 °C, 3 –150 °C, 4 – PFA.

Download (76KB)
5. Fig. 3. X-ray spectrum of the crystalline phase of PFA and the products of interaction of PFA/PEPA samples in different mass ratios: 1 – PFA; 2 – 1: 0.3; 3 – 1: 0.5; 4 – 1: 0.9. Synthesis conditions: T = 120 °C, holding for 0.5 h.

Download (169KB)
6. Fig. 4. X-ray spectrum of the crystalline and amorphous phases of the PFA/PEPA interaction products. Synthesis conditions: T = 120 °C, holding for 0.5 h.

Download (289KB)

Copyright (c) 2024 Russian Academy of Sciences