Substitution of the internal AsO3– ligand in complex [{Re4As2(AsO)2}(CN)12]8–

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The reaction of the tetrahedral rhenium arsenide cluster K8[{Re4As2(AsO)2}(CN)12] with molten KF · HF is studied. The reaction affords complex K6[{Re4As2(AsO)F}(CN)12] · 3H2O · KF (I). The substitution of one (µ3-AsO)3– ligand by µ3-F is shown to occur during the reaction, and the remained internal ligands are not involved in the reaction. The phase purity of the synthesized compound and the absence of impurities of different compositions are confirmed by phase X-ray diffraction (XRD) and mass spectrometry. The structure of complex I is determined by single-crystal XRD (CIF file CCDC no. 2362544).

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Pronin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: pronin@niic.nsc.ru
Ресей, Novosibirsk

Yu. Mironov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pronin@niic.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Krasilnikova A.A., Shestopalov M.A., Brylev K.A. et al. // J. Inorg. Biochem. 2015. V. 144. P. 13.
  2. Krasilnikova A.A., Solovieva A.O., Ivanov A.A. et al. // Toxicol. Res. 2017. V. 6. № 4. P. 554.
  3. Cordier S., Molard Y., Brylev K.A. et al. // J. Clust. Sci. 2015. V. 26. № 1. P. 53.
  4. Kitamura N., Ueda Y., Ishizaka S. et al. // Inorg. Chem. 2005. V. 44. № 18. P. 6308.
  5. Konovalov D.I., Ivanov A.A., Vorotnikov Y.A. et al. // Inorg. Chem. 2021. V. 60. № 19. P. 14687.
  6. Бардин В.А., Иванов А.А.,Коновалов Д.И. и др. // Журн. cтруктур. химии. 2020. Т. 61. № 10. С. 1709 (Bardin V.A., Ivanov A.A., Konovalov D.I. et al. // J. Struct. Chem. 2020. V. 61. № 10. P. 1624.) doi: 10.1134/S0022476620100157
  7. Solovieva A.O., Kirakci K., Ivanov A.A. et al. // Inorg. Chem. 2017. V. 56. № 21. P. 13491.
  8. Gao L., Peay M.A., Gray T.G. // Chem. Mater. 2010. V. 22. № 23. P. 6240.
  9. Kirakci K., Shestopalov M.A., Lang K. // Coord. Chem. Rev. 2023. V. 481. P. 215048.
  10. Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A. et al. // Inorg. Chem. 2018. V. 57. № 4. P. 2072.
  11. Mironov Y.V., Naumov N.G., Brylev K.A. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 10. P. 1297.
  12. Marchuk M.V., Vorotnikov Y.A., Ivanov A.A. et al. // Symmetry. 2022. V. 14. № 10. P. 2117.
  13. Seyboldt A., Enseling D., Justel T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 45. P. 5387.
  14. Přibyl T., Rumlová M., Mikyšková R. et al. // Inorg. Chem. 2024. V. 63. № 9. P. 4419.
  15. Konovalov D.I., Novikova E.D., Ivanov A.A. et al. // Polyhedron. 2024. V. 251. P. 116874.
  16. Gassan A.D., Ivanov A.A., Eltsov I.V. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 30. P. 2896.
  17. Novikova E.D., Gassan A.D., Ivanov A.A. et al. // New J. Chem. 2022. V. 46. № 5. P. 2218.
  18. Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. V. 500. P. 215543.
  19. Mikhaylov M.A., Sokolov M.N. // Eur. J. Inorg. Chem. 2019. V. 2019. № 39–40. P. 4181.
  20. Pronin A.S., Smolentsev A.I., Kozlova S.G. et al. // Inorg. Chem. 2019. V. 58. № 11. P. 7368.
  21. Pronin A.S., Gayfulin Y.M., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. № 49. P. 19756.
  22. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
  23. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  24. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  25. Yang C.S., Horng H.C., Liao F.L. et al. // Chem. Commun. 1994. № 14. P. 1637.
  26. Horn E., Snow M. // Aust. J. Chem. 1981. V. 34. № 4. P. 737.
  27. Pronin A.S., Gayfulin Y.M., Smolentsev A.I. et al. // J. Clust. Sci. 2019. V. 30. № 5. P. 1253.
  28. Пронин А.С., Яровой С.С., Смоленцев А.И. // Изв. АН. Сер. хим. 2019. Т. 68. № 4. С. 777 (Pronin A.S., Smolentsev A.I., Mironov Y.V. // Russ. Chem. Bull. 2019. V. 68. № 4. P. 777). https://doi.org/10.1007/s11172-019-2485-4
  29. Пронин А.С., Яровой С.С., Смоленцев А.И. // Изв. АН. Сер. хим. 2020. Т. 69. № 11. С. 2129 (Pronin A.S., Smolentsev A.I., Mironov Y.V. // Russ. Chem. Bull. 2020. V. 69. № 11. P. 2129). https://doi.org/10.1007/s11172-020-3010-5.
  30. Efremova O.A., Mironov Y.V., Fedorov V.E. // Eur. J. Inorg. Chem. 2006. V. 2006. № 13. P. 2533.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structure of the anion [{Re4As2(AsO)F}(CN)12]6–. Atoms of the symmetrically independent part are numbered. Thermal ellipsoids of 50% probability are shown.

Жүктеу (235KB)
3. Fig. 2. Scheme of the reaction of substitution of one internal ligand (AsO)3– by F– in the anion [{Re4As2(AsO)F}(CN)12]6–.

Жүктеу (157KB)
4. Fig. 3. Scheme of the reaction of substitution of one internal ligand (AsO)3– by F– in the anion [{Re4As2(AsO)F}(CN)12]6–.

Жүктеу (150KB)
5. Fig. 4. IR spectra of compound I (black line) and the starting complex K8[{Re4As2(AsO)2}(CN)12] 12H2O (red line).

Жүктеу (178KB)
6. Fig. 5. Fragment of the mass spectrum of an aqueous solution of complex I.

Жүктеу (309KB)

© Российская академия наук, 2025