Synthesis and structure of water-soluble complexes of copper fumarate and succinate with monoethanolamine

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

New water-soluble copper(II) complexes with dicarboxylic acids were obtained by the heterogeneous reaction of copper hydroxy carbonate with succinic or fumaric acid in water at 50°C. The additional introduction of monoethanolamine (MEA) into the complexes ensured high solubility of copper succinate and fumarate. The structures of the complexes [Cu(Suc) · 2MEA] · H2O and [Cu(Fum) · 2MEA] · H2O were studied by X-ray diffraction (CCDC nos. 2352578 and 2352579, respectively). The compounds were found to have a polymeric structure composed of zigzag chains.

Толық мәтін

Рұқсат жабық

Авторлар туралы

B. Petrov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bip@iomc.ras.ru
Ресей, Nizhny Novgorod

V. Semenov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: bip@iomc.ras.ru
Ресей, Nizhny Novgorod

N. Lazarev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: bip@iomc.ras.ru
Ресей, Nizhny Novgorod

E. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: bip@iomc.ras.ru
Ресей, Nizhny Novgorod

M. Lopatin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: bip@iomc.ras.ru
Ресей, Nizhny Novgorod

Әдебиет тізімі

  1. O’Connor B.H., Maslen E.N. // Acta Crystallogr. 1966. V. 20. P. 824.
  2. Bassi P.S., Chopra G.S., Gupta B.R. // Thermochim. Acta. 1988. V. 124. P. 197.
  3. Ghoshal D., Ghosh A.K., Mostufa G. et al. // Inorg. Chim. Acta. 2007. V. 360. № 5. P. 1771.
  4. Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 500. P. 6.
  5. Юданова Л.И., Логвиненко В.А., Юданов Н.Ф. и др. // Неорган. материалы. 2014. Т. 50. № 9. С. 1022 (Yudanova L.I., Logvinenko V.A., Yudanov N.F. et al. // Inorg. Mater. 2014. V. 50. P. 945). https://doi.org/10.1134/S0020168514090180
  6. Carr N.J., Galwey A.K. // Faraday Trans. 1. 1988. V. 84. P. 1357.
  7. Inoue M., Kawaji H., Tojo T. et al. // Thermochim. Acta. 2005. V. 431. P. 58.
  8. Ying M., Yang G., Xu Y. et al. // Analyst. 2022. V. 147. P. 40.
  9. Prout C.K., Carruthers J.R., Rossotti F.J.C. // J. Chem. Soc. A. 1971. P. 3342.
  10. Sobel S., Haigney A., Kim M. et al. // Chem. Spec. Bioavailab. 2010. V. 22. P. 109.
  11. Kondratenko Y., Zolotarev A.A., Ignatyev I. et al. // Transition Met. Chem. 2020. V. 45. P. 71.
  12. Batool S.S., Gilani S.R., Zainab S.S. et al. // J. Coord. Chem. 2020. V. 73. P. 1778.
  13. Скорик Н.А., Васильева О.А. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 529 (Skorik N.A., Vasil’eva O.A. // Russ. J. Inorg. Chem. 2023. V. 68. P. 458. https://doi.org/10.1134/S0036023623600211
  14. Yao Y.W., Xin W., Qi Z.S. // Transition Met. Chem. 2002. V. 27. P. 481.
  15. Padmanabhan M., Kumary S.M., Huang X. et al. // Inorg. Chim. Acta. 2005. V. 358. P. 3537.
  16. Gonzalez Garmendis M.J., San Nacianceno V., Seco J.M. et al. // Acta Cryst. C. 2009. V. 65. P. m436.
  17. Thebo K.H., Shad H.A., Malik M.A. et al. // J. Mol. Struct. 2010. V. 970. P. 75.
  18. Юданова Л.И., Логвиненко В.А., Юданов Н.Ф. и др. // Коорд. химия. 2013. Т. 39. № 5. С. 309 (Yudanova L.I., Logvinenko V.A., Yudanov N.F. et al. // Russ. J. Coord. Chem. 2013. V. 39. P. 415). https://doi.org/10.1134/S1070328413050102
  19. Юданова Л.И., Логвиненко В.А., Корольков И.В. и др. // Журн. физ. химии. 2018. Т. 92. № 11. С. 1753 (Yudanova L.I., Logvinenko V.A., Korol’kov I.V. et al. // Russ. J. Phys. Chem. 2018. V. 92. № 11. P. 2247). https://doi.org/10.1134/S003602441811047X
  20. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. P. 3536.
  21. Семенов В.В., Золотарева Н.В., Новикова О.В. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 5. С. 980 (Semenov V.V., Zolotareva N.V., Novikova O.V. et al. // Russ. Chem. Bull. 2022. V. 71. P. 980). https://doi.org/10.1007/s11172-022-3500-8
  22. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.41.93а — Software Package, Rigaku OD, 2020.
  23. SCALE3 ABSPACK: Empirical absorption correction, CrysAlisPro 1.171. 41.93а — Software Package, Rigaku OD, 2020.
  24. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  25. Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite; Madison (WI, USA): Bruker AXS, 2003.
  26. Sheldrick G.M. // Acta Crystallogr. С. 2015. V. 71. P. 3.
  27. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  28. Золотарева Н.В., Семенов В.В., Петров Б.И. // Журн. орган. химии. 2013. Т. 83. № 11. С. 1781 (Zolotareva N.V., Semenov V.V., Petrov B.I. // Russ. J. Gen. Chem. 2013. V. 83. P. 1985). https://doi.org/10.1134/S1070363213110030
  29. Fachini L.G., Baptistella G.B., Postal K. // RSC Adv. 2023. V. 13. P. 27997.
  30. Hathaway B.J., Billing D.E. // Coord. Chem. Rev. 1970. V. 5. № 2. P. 143.
  31. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. 245 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Electron absorption spectrum of an aqueous solution of copper acetate with a concentration of 5 × 10–3 mol/l (1 cm cuvette).

Жүктеу (80KB)
3. Fig. 2. EAS of copper maleate in water with a concentration of 3 × 10–3 mol/l (1), the same sample with the addition of 5 × 10–5 mol MEA (2), 1 × 10–4 mol MEA (3) and 2 × 10–4 mol MEA (4).

Жүктеу (171KB)
4. Fig. 3. EAS of an aqueous solution of copper succinate (1). Curves (2–6) are the absorption of the same complex with the successive addition of MEA to the initial solution of the copper succinate complex (in the same quantities as for copper maleate – curves (2–4), 3 × 10–4 mol MEA (5) and 4 × 10–4 mol MEA (6).

Жүктеу (329KB)
5. Fig. 4. Structures of the [Cu(Suc) ∙ 2MEA] ∙ H2O (I) and [Cu(Fum) ∙ 2MEA] ∙ H2O (II) complexes in the crystal. Thermal ellipsoids of atoms are shown with 50% probability. The symbol ’ denotes symmetrically equivalent atoms of the complexes, the letters A and B denote symmetric atoms of adjacent links of the polymer chains {[Cu(L) ∙ 2MEA] ∙ H2O}n.

Жүктеу (239KB)
6. Fig. 5. Fragment of the polymer chain of complexes {[Cu(L) ∙ 2MEA] ∙ H2O}n I and II with thermal ellipsoids of atoms of 50% probability (hydrogen atoms and solvate water molecules are not shown) (a); fragment of the crystal packing of I and II (b).

Жүктеу (468KB)
7. Fig. 6. The system of hydrogen O H bonds in crystals of complexes I and II in different projections (intrachain H bonds O(2) H(3) are not shown) (a–c); a fragment of the crystal packing of I and II with the numbering of hydrogen bond atoms (d). Polymer chains of different rows of the same type are shown in two shades of blue (B).

Жүктеу (672KB)

© Российская академия наук, 2025