Matched filter based post processing approach for active infrared thermography for non-destructive testing and evaluation of carbon fibre reinforced polymer materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This research paper investigates the effectiveness of infrared thermography (IRT) in detecting blind holes of varying depth and diameter in Carbon Fiber Reinforced Polymer (CFRP) sample. It utilises halogen lamps as the heat source and implements three excitation techniques: Pulse Thermography (PT), Lock-in Thermography (LT) and Frequency Modulation Thermal Wave Imaging (FMTWI); along with that, it compares two post-processing approaches, Cross-correlation (CC) and Frequency Domain Phase (FDP) on the obtained thermal images. The signal-to-noise ratio (SNR) is considered a figure of merit for evaluating the effectiveness of each technique and its associated post-processing approaches. The results demonstrate that the CC post-processing technique consistently outperforms the FDP method in enhancing defect visibility and improving SNR values across all excitation techniques and configurations. This research highlights the potential of IRT as a reliable, non-destructive testing method for detecting and characterising defects in a chosen CFRP test sample.

Full Text

Restricted Access

About the authors

Suresh Kumar Bhambhu

Indian Institute of Technology Delhi

Email: mulaveesala@sense.iitd.ac.in

InfraRed Imaging Laboratory (IRIL), Centre for Sensors, Instrumentation and Cyber Physical System Engineering (SeNSE)

 

India, Hauz Khas, New Delhi, 110016

Vanita Arora

InfraRed Vision & Automation Pvt. Ltd.

Email: mulaveesala@sense.iitd.ac.in
India, Rupnagar, Punjab, 140001

Ravibabu Mulaveesala

Indian Institute of Technology Delhi

Author for correspondence.
Email: mulaveesala@sense.iitd.ac.in

InfraRed Imaging Laboratory (IRIL), Centre for Sensors, Instrumentation and Cyber Physical System Engineering (SeNSE)

India, Hauz Khas, New Delhi, 110016

References

  1. Ibarra-Castanedo C., Sfarra S., Ambrosini D., Paoletti D., Bendada A., Maldague X. Diagnostics of panel paintings using holographic interferometry and pulsed thermography // Quant Infrared Thermogr. J. 2010. No. 7. P. 85—114. https://doi.org/10.3166/qirt.7.85-114
  2. Busse G. Optoacoustic phase angle measurement for probing a metal // Appl. Phys. Lett. 1979. V. 35. P. 759—760. https://doi.org/10.1063/1.90960
  3. Busse G. Optoacoustic and photothermal material inspection techniques // Appl. Opt. 1982. V. 21. P. 107—110. https://doi.org/10.1364/AO.21.000107
  4. Zhang H., Sfarra S., Saluja K., Peeters J., Fleuret J., Duan Y., Fernandes H., Avdelidis N., Ibarra-Castanedo C., Maldague X. Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography // J. Nondestr Eval. 2017. V. 36. https://doi.org/10.1007/s10921-017-0414-8
  5. Kladov D.Y., Chulkov A.O., Vavilov V.P., Stasevskii V.I. Effectiveness of Using Thermal Imagers of Various Types in Active Thermal Testing of Delaminations in Nonmetals // Russian Journal of Nondestructive Testing. 2023. V. 59 (7). P. 796—803.
  6. Yurkina V.A. Infrared thermography method to detect cracking of nuclear fuels in real-time //Nuclear Engineering and Design. 2023. V. 405. 112196. https://doi.org/10.1016/j.nucengdes.2023.112196
  7. Ghali V.S., Mulaveesala R. Comparative data processing approaches for thermal wave imaging techniques for non-destructive testing // Sens Imaging. 2011. No. 12. P. 15—33. https://doi.org/10.1007/s11220-011-0059-0
  8. Vavilov V.P., Burleigh D.D. Review of pulsed thermal NDT: Physical principles, theory and data processing // NDT and E International. 2015. V. 73. P. 28—52. https://doi.org/10.1016/j.ndteint.2015.03.003
  9. Vavilov V. Thermal non destructive testing: short history and state-of-art / QIRT Council, 1992. doi: 10.21611/qirt.1992.028
  10. Maldague X., Marinetti S. Pulse phase infrared thermography // J. Appl. Phys. 1996. V. 79. P. 2694—2698. https://doi.org/10.1063/1.362662
  11. Lee J., Georgitzikis E., Van Sieleghem E., Chang Y.T., Syshchy O., Li Y., Boulenc P., Karve G., Furxhi O., Cheyns D., Malinowski P.E. Image sensors for low cost infrared imaging and 3D sensing / In: Fulop G.F., Zheng L., Andresen B.F., Miller J.L. (eds.) Infrared Technology and Applications XLVI. p. 9. SPIE. 2020.
  12. Rani A., Das P., Sharma A., Arora V., Dua G., Mulaveesala R. Estimation of Defect Depth in Carbon Fibre Reinforced Polymer Using Frequency Modulated Thermal Wave Imaging: An Analytical Study // Russian Journal of Nondestructive Testing. 2023. V. 59 (1). P. 117—128.
  13. Carslaw H.S., Horatio S., Jaeger J.C., John C. Conduction of heat in solids. Oxford: Clarendon Press, 1959.
  14. Vavilov V.P. Thermal nondestructive testing of materials and products: a review // Russian Journal of Nondestructive Testing. 2017. V. 53. P. 707—730. https://doi.org/10.1134/S1061830917100072
  15. Vavilov V.P. Thermal Nondestructive Testing: Development of Conventional Directions and New Trends (A Review) // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 6. P. 702—723.
  16. Ding L., Gorelik S., Wang P., Sadovoy A.V., Zhu Q., Ngo A.C.Y., Teng J. Reconfigurable Laser-Stimulated Lock-In Thermography for Surface Micro-Crack Detection // Sensors. 2023. V. 23. P. 4090. https://doi.org/10.3390/s23084090
  17. Meola C., Carlomagno G.M. Recent advances in the use of infrared thermography // Meas. Sci. Technol. 2004. V. 15. P. R27—R58. https://doi.org/10.1088/0957-0233/15/9/R01
  18. Ghali V.S., Mulaveesala R., Takei M. Frequency-modulated thermal wave imaging for non-destructive testing of carbon fiber-reinforced plastic materials // Meas. Sci. Technol. 2011. V. 22. https://doi.org/10.1088/0957-0233/22/10/104018
  19. Tuli S., Mulaveesala R. Defect detection by pulse compression in frequency modulated thermal wave imaging // Quant Infrared Thermogr. J. 2005. No. 2. P. 41—54. https://doi.org/10.3166/qirt.2.41-54
  20. Vavilov V.P. Pulsed thermal NDT of materials: back to the basics // Nondestructive Testing and Evaluation. 2007. V. 22. P. 177—197. https://doi.org/10.1080/10589750701448407
  21. Carlomagno G.M., Meola C. Comparison between thermographic techniques for frescoes NDT // NDT & E International. 2002. V. 35. P. 559—565. https://doi.org/10.1016/S0963-8695(02)00029-4
  22. Giorleo G., Meola C. Comparison between pulsed and modulated thermography in glass–epoxy laminates // NDT & E International. 2002. V. 35. P. 287—292. https://doi.org/10.1016/S0963-8695(01)00062-7
  23. Maidague X., Largoutit Y., Couturier J.-P. A study of defect depth using neural networks in pulsed phase thermography: modelling, noise, experiments. 1998.
  24. Arora V., Mulaveesala R., Bison P. Effect of Spectral Reshaping on Frequency Modulated Thermal Wave Imaging for Non-destructive Testing and Evaluation of Steel Material // J. Nondestr. Eval. 2016. V. 35. P. 1—7. https://doi.org/10.1007/s10921-015-0333-5
  25. Dua G., Arora V., Mulaveesala R. Nondestructive Testing and Evaluation of Glass Fiber Reinforced Polymer Composites Using Pulse Compression Favorable Analysis Approach // Russian Journal of Nondestructive Testing. V. 60 (5). P. 574—582.
  26. Vavilov V.P. Thermal nondestructive testing of materials and products: a review // Russian Journal of Nondestructive Testing. 2017. V. 53 (10). P. 707—730. https://doi.org/10.1134/S1061830917100072

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sketch of a cross-shaped specimen made of AISI 304 steel for biaxial tensile testing (a); working area of ​​a biaxial testing machine with a cross-shaped specimen made of AISI 304 steel installed (b).

Download (195KB)
3. Fig. 2. Sinusoidal thermal characteristic at a frequency of 1 Hz (a); Fourier transform of the sinusoidal thermal characteristic (b).

Download (236KB)
4. Fig. 3. Thermal characteristic with linear frequency modulation (a); Fourier transform of thermal characteristic with linear frequency modulation (b).

Download (295KB)
5. Fig. 4. Schematic diagram of the adapted post-processing approach for obtaining correlation coefficient images: T(xref, yref, t) is the reference temperature response; T(xi, yi, t) is the specified location of the temperature response; FT is the Fourier transform; IFT is the inverse Fourier transform.

Download (80KB)
6. Fig. 5. Pulse compression of a linear frequency-modulated thermal response using a matched filter.

Download (482KB)
7. Fig. 6. Scheme of extracting magnetic and phase images of a frame using the frequency domain approach.

Download (97KB)
8. Fig. 7. Experimental setup used for active infrared thermography.

Download (397KB)
9. Fig. 8. Schematic diagram of the experimental CFRP sample with defects of different depths and diameters.

Download (191KB)
10. Fig. 9. Thermograms of experimental CFRP samples obtained using different thermal excitation schemes (PT, LT, FM) and corresponding post-processing approaches (CC and FDP): CC PT for 71 s (a); FDP PT at 0.04 Hz (b); CC LT for 79 s (c); FDP LT at 0.05 Hz (d); CC FM for 88 s (e); FDP FM at 0.09 Hz (e).

Download (1MB)
11. Fig. 10. SNR plots obtained for the CFRP prototype using different thermal excitation schemes and corresponding post-processing approaches (cross-correlation and phase analysis in the frequency domain): CCPT at 71 s (a); FDP PT at 0.04 Hz (b); CCLT at 79 s (c); FDP LT at 0.05 Hz (d); CC FM at 88 s (d); FDP FM at 0.09 Hz (e).

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences