NONLINEAR EVOLUTION OF STATIONARY PERTURBATIONS IN A SPATIALLY EVOLVING CIRCULAR FLOODED JET
- Authors: Nikitin N.V.1, Popelenskaya N.V.1
-
Affiliations:
- Research Institute of Mechanics, Lomonosov Moscow State University
- Issue: Vol 65, No 5 (2025)
- Pages: 796-806
- Section: Mathematical physics
- URL: https://rjpbr.com/0044-4669/article/view/686934
- DOI: https://doi.org/10.31857/S0044466925050156
- EDN: https://elibrary.ru/IHMHQA
- ID: 686934
Cite item
Abstract
The non-modal spatial development of stationary three-dimensional perturbations in a circular flooded jet at Re = 2850 is numerically investigated. The conditions of the laboratory experiment performed earlier at the Moscow State University Research Institute of Mechanical Engineering are reproduced. A method of calculation of optimal perturbations in the conditions of the main flow developing downstream is developed. The optimal perturbations corresponding to different azimuthal numbers are found. Their shape, character of development and degree of growth are determined. Nonlinear development of optimal perturbations at different values of their initial amplitude is studied. It is shown that nonlinear effects lead to a slowing down of the growth rate when they develop downstream. Currents deformed by stationary perturbations in the angular direction are investigated for stability to small unsteady perturbations. It is found that with increasing degree of deformation, the maximum growth rate of perturbations increases significantly due to the appearance of a specific short-wave mode of instability
About the authors
N. V. Nikitin
Research Institute of Mechanics, Lomonosov Moscow State University
Email: nvnikitin@mail.ru
Moscow, Russia
N. V. Popelenskaya
Research Institute of Mechanics, Lomonosov Moscow State UniversityMoscow, Russia
References
- Morris P.J. The spatial viscous instability of axisymmetric jets // J. Fluid Mech. 1976. V. 77.№3. P. 511–529.
- Michalke A. Survey on jet instability theory // Prog. Aerospace Sci. 1984. V. 21. P. 159–199.
- Грек Г.Р., Козлов В.В., Литвиненко Ю.А. Устойчивость дозвуковых струйных течений // Учебное пособие: Новосиб. гос. ун-т. Новосибирск. 2012. 208 с.
- Zayko J., Teplovodskii S., Chicherina A., Vedeneev V., Reshmin A. Formation of free round jets with long laminar regions at large Reynolds numbers // Phys. Fluids. 2018. V. 30. P. 043603.
- Зайко Ю.С., Решмин А.И., Тепловодский С.Х., Чичерина А.Д. Исследование затопленных струй с увеличенной длиной начального ламинарного участка // Изв. РАН. МЖГ. 2018.№1. С. 97–106.
- Ellingsen T., Palm E. Stability of linear flow // Phys. Fluids. 1975. V. 18. P. 487–488.
- Landahl M.L. A note on algebraic instability of inviscid parallel shear flows // J. Fluid Mech. 1980. V. 98. P. 243–251.
- Schmid P.J., Henningson D.S. Optimal energy density growth in Hagen–Poiseuille flow // J. Fluid Mech. 1994. V. 277. P. 197–225.
- Andersson P., Berggren M., Henningson D.S. Optimal disturbances and bypass transition in boundary layers // Phys. Fluids. 1999. V. 11. P. 134–150.
- Luchini P. Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations // J. Fluid Mech. 2000. V. 404. P. 289–309.
- Tumin A., Reshotko E. Spatial theory of optimal disturbances in boundary layers // Phys. Fluids. 2001. V. 13. P. 2097–2104.
- Reshotko E., Tumin A. Spatial theory of optimal disturbances in a circular pipe flow // Phys. Fluids. 2001. V. 13. P. 991–996.
- Boronin S.A., Healey J.J., Sazhin S.S. Non-modal stabillity of round viscous jets // J. Fluid Mech. 2013. V. 716. P. 96–119.
- Jimenez-Gonzalez J.I., Brancher P., Martinez-Bazan C. Modal and non-modal evolution of perturbations for parallel round jets // Phys. Fluids. 2015. V 27. P. 044105.
- Jimenez-Gonzalez J.I., Brancher P. Transient energy growth of optimal streaks in parallel round jets // Phys. Fluids. 2017. V. 29. P. 114101.
- Боронин С.А., Осипцов А.Н. Модальная и немодальная неустойчивость течения запыленного газа в пограничном слое // Изв. РАН. МЖГ. 2014.№6. С. 80–93.
- Калашник М.В., Чхетиани О.Г. Оптимальные возмущения в развитии неустойчивости свободного слоя сдвига и системы из двух встречных струйных течений // Изв. РАН. МЖГ. 2020.№2. С. 28–41.
- Ivanov O., Ashurov D., Gareev L., Vedeneev V. Non-modal perturbation growth in a laminar jet: an experimental study // J. Fluid Mech. 2023. V. 963. P. A8.
- Wang C., Lesshafft L., Cavalieri A. V., Jordan P. The effect of streaks on the instability of jets // J. Fluid Mech. 2021. V. 910. P. A14.
- Ashurov D.A., Nikitin N.V. Development of stationary disturbances in a spatially developing jet // Fluid Dynamics. 2024. V. 59.№4. P. 723–731.
- Абдульманов К.Э., Никитин Н.В. Развитие возмущений в круглой затопленной струе с двумя модами неустойчивости // Изв. РАН. МЖГ. 2022.№5. С. 25–40.
- Gareev L.R., Zayko J.S., Chicherina A.D., Trifonov V.V., Reshmin A.I., Vedeneev V.V. Experimental validation of inviscid linear stability theory applied to an axisymmetric jet // J. Fluid Mech. 2022. V. 934. A3.
- Nikitin N. Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates // J. Comput. Phys. 2006. V. 217. P. 759–781.
- Michalke A. Instabilitat eines kompressiblen runden Freistrahls unter Berucksichtigung des Einflusses der Strahlgrenzschichtdicke // Z. Flugwiss. 1971. V. 19. P. 319–328.
Supplementary files
