TIME DEPENDENCE OF STABILITY OF THE WATER-VAPOR PHASE TRANSITION FRONT IN HIGH-TEMPERATURE ROCKS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigate the stability of a water boiling front in high-temperature rocks, which separates a water-saturated region from a region saturated with superheated vapor. Such flows arise both during the exploitation of geothermal reservoirs and in natural processes. We conduct the stability analysis using the modified method of normal modes, where the amplitude of pressure perturbation depends on time, and the water-saturated region is bounded.We studied resulting dispersion equation numerically and asymptotically. We found that the stability criterion depends on time and asymptotically approaches the solution for an infinite water-saturated region.We show that the transition to instability occurs at finite wavenumbers, and the characteristic scale of the most unstable perturbations remains almost unchanged over time.

About the authors

K. R. Zhitnikov

Ishlinsky Institute for Problems in Mechanics RAS

Email: k.zhitnik01@gmail.com
Moscow, Russia

G. G. Tsypkin

Ishlinsky Institute for Problems in Mechanics RAS

Email: tsypkin@ipmnet.ru
Moscow, Russia

References

  1. Grant M.A. Review no. 1 Geothermal reservoir modeling // Geothermics. 1983. Т. 12.№4. С. 251–263.
  2. Schubert G., Straus J.M. Gravitational stability of water over steam in vapor-dominated geothermal systems // J. Geophys. Res. 1980. Т. 85.№B11. С. 6505–6512.
  3. Tsypkin G.G., Il’ichev A.T. Gravitational stability of the interface in water over steam geothermal reservoirs // Transport in porous media. 2004. Т. 55. С. 183–199.
  4. Tsypkin G.G., Il’ichev A.T. Superheating of water and morphological instability of the boiling front moving in the low-permeability rock // Int. J. Heat Mass Transfer. 2021. Т. 167. С. 120820.
  5. Цыпкин Г.Г. Исследование перехода к неустойчивости фронта кипения воды при инжекции в геотермальный резервуар // ТМФ. 2022. Т. 211.№2. С. 347–357.
  6. Цыпкин Г.Г. Неустойчивость фронта фазового перехода при инжекции воды в высокотемпературные породы // Тр. МИАН им. В.А. Стеклова. 2018. Т. 300. С. 197–204.
  7. Куликовский А.Г. Об устойчивости однородных состояний // ПММ. 1966. Т. 30.№1. С. 148–153.
  8. Riaz A., Hesse M., Tchelepi H.A., Orr F.M. Onset of convection in a gravitationally unstable boundary layer in porous media // J. Fluid Mech. 2006. Т. 548. С. 87–111.
  9. Rapaka S., Pawar R., Stauffer P., Zhang D., Chen S. Onset of convection over a transient base-state in anisotropic and layered porous media // J. Fluid Mech. 2009. Т. 641. С. 227–244.
  10. Tilton N., Riaz A. Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media // J. Fluid Mech. 2014. Т. 745. С. 251–278.
  11. Tilton N., Daniel D., Riaz A. The initial transient period of gravitationally unstable diffusive boundary layers developing in porous media // Phys. Fluids. 2013. Т. 25.№9.
  12. Daniel D., Riaz A. Effect of viscosity contrast on gravitationally unstable diffusive layers in porous media // Phys. Fluids. 2014. Т. 26.№11.
  13. Mahmoodpour S., Rostami B., Soltanian M.R., Amooie M.A. Effect of brine composition on the onset of convection during CO2 dissolution in brine // Comput. and Geosciences. 2019. Т. 124. С. 1–13.
  14. Trefethen L.N., Trefethen A.E., Reddy S.C., Driscoll T.A.Hydrodynamic stability without eigenvalues // Science. 1993. Т. 261.№5121. С. 578–584.
  15. Luther E.E., Dallaston M.C., Shariatipour S.M., Holtzman R. Onset of convective instability in an inclined porous medium // Phys. Fluids. 2022. Т. 34.№1.
  16. Elgahawy Y., Azaiez J. Rayleigh–Taylor instability in porous media under sinusoidal time-dependent flow displacements // AIP Advances. 2020. Т. 10.№7.
  17. Соболева Е.Б. Численное моделирование фильтрационных концентрационно-конвективных течений с контрастом вязкости // Ж. вычисл. матем. и матем. физ. 2022. Т. 62.№11. С. 1927–1939.
  18. Соболева Е.Б. Метод численного моделирования концентрационно-конвективных течений в пористых средах в приложении к задачам геологии // Ж. вычисл. матем. и матем. физ. 2019. Т. 59.№11. С. 1961–1972.
  19. Brownell Jr D.H., Garg S.K., Pritchett J.W. Governing equations for geothermal reservoirs //Water Resour. Res. 1977. Т. 13.№6. С. 929–934.
  20. Tsypkin G.G., Calore C. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour // Int. J. Heat Mass Transfer. 2007. Т. 50.№15–16. С. 3195–3202.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences