ABOUT THE DIRECTION OF TRAVEL OF TRAVELING WAVES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a number of problems involving spatial wave propagation, it is necessary to distinguish between waves traveling in one direction and in the other. Examples of such problems are the propagation of waves from a point the problem of pulsating source; the problem of spatial optimal perturbations; the problem of determining the absolute or convective character of instability, etc. In addition, when calculating the wave motion in the inhomogeneous medium by marching methods for numerical stabilization, the projection of the solution onto the space of waves propagating in the same direction is used, which also requires their correct screening. Commonly accepted in the literature indicators of the direction of wave motion are the Briggs criterion derived from the causality principle and, in some papers, the sign of the group velocity. This paper discusses their interpretations and the relationship between them. Examples are given where the identification of the wave direction by the sign of the group velocity is erroneous and leads to qualitatively incorrect results. The case when direct application of the Briggs criterion is impossible due to absorption of the discrete mode describing the wave by a continuous spectrum is considered for the first time. A generalization of the Briggs criterion to this case is given and examples of its application are given.

About the authors

V. V. Vedeneev

V.A. Steklov Russian Academy of Sciences

Email: vasily@vedeneev.ru
Moscow, Russia

References

  1. Hersh R. Boundary conditions for equations of evolution // Arch. Rat. Mech. Anal. 1964. Vol. 16(4). P. 243–264.
  2. Andersson P., Berggren M., Henningson D.S. Optimal disturbances and bypass transition in boundary layers // Phys. Fluids. 1999. Vol. 11. P. 134–150.
  3. Reshotko E., Tumin A. Spatial theory of optimal disturbances in a circular pipe flow // Phys. Fluids. 2001. Vol. 13. P. 991–996.
  4. Ivanov O.O., Ashurov D.A., Gareev L.R., Vedeneev V.V. Optimal disturbances in round submerged jets // J. Fluid Mech. 2023. Vol. 963. Paper A8.
  5. Ашуров Д.А., Никитин Н.В. Развитие стационарных возмущений в пространственно развивающейся струе // Изв. РАН. МЖГ. 2024.№4. С. 94–102.
  6. Ashurov D.A. Optimal disturbances in round submerged jets // Phys. Fluids. 2024. Vol. 36. Paper 104118.
  7. Schmid P.J., Henningson D. S. Stability and transition in shear flows. Springer, 2001. 558 p.
  8. Towne A., Colonius T. One-way spatial integration of hyperbolic equations // J. Comp. Phys. 2015. Vol. 300. P. 844–861.
  9. Towne A., Rigas G., Kamal O., Pickering E., Colonius T. Efficient global resolvent analysis via the one-way Navier–Stokes equations // J. Fluid Mech. 2022. Vol. 948. Paper A9.
  10. Zasko G.V., Boiko A.V., Demyanko K.V., Nechepurenko Y.M. Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems // Russ. J. Numer. Anal. Math. Modelling. 2024. Vol. 39(1). P. 47–59.
  11. Бойко А.В., Демьянко К.В., Засько Г.В., Нечепуренко Ю.М.О параболизации уравнений распространения малых возмущений в двумерных пограничных слоях // Теплофизика и аэромеханика. 2024.№3. С. 423–440.
  12. Веденеев В.В. Математическая теория устойчивости плоскопараллельных течений и развитие турбулентности. Долгопрудный: Издательский Дом “Интеллект”, 2016. 152 с.
  13. Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. Часть 1. М.: Физматгиз, 1963. 584 с.
  14. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Том 6. Гидродинамика. М.: Наука, 1986. 736 с.
  15. Петровский И. Г. О проблеме Коши для систем линейных уравнений с частными производными в области неаналитических функций // Бюлл. Моск. Ун. Секция А. Математика и механика. 1938. Т. 1. Вып. 7. С. 16.
  16. Briggs R. J. Electron-Stream Interaction with Plasmas. MIT Press, 1964. 187 p.
  17. Ashpis D. E., Reshotko E. The vibrating ribbon problem revisited // J. Fluid Mech. 1990. Vol. 213. P. 531–547.
  18. Ахиезер А. И., Половин Р. В. Критерии нарастания волн // УФН. 1971. Т. 104.№2. С. 185–200.
  19. Лифшиц Е. М., Питаевский Л. П. Теоретическая физика. Том 11. Физическая кинетика. М.: Наука, 1979. 528 с.
  20. Gaster M. A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability // J. Fluid Mech. 1962. Vol. 14(2). P. 222–224.
  21. Zayko J., Teplovodskii S., Chicherina A., Vedeneev V., Reshmin A. Formation of free round jets with long laminar regions at large Reynolds numbers // Phys. Fluids. 2018. Vol. 30. Paper 043603.
  22. Gareev L.R., Zayko J.S., Chicherina A.D., Trifonov V.V., Reshmin A.I., Vedeneev V.V. Experimental validation of inviscid linear stability theory applied to an axisymmetric jet // J. Fluid Mech. 2022. Vol. 934. Paper A3.
  23. Batchelor G.K., Gill A.E. Analysis of the stability of axisymmetric jets // J. Fluid Mech. 1962. Vol. 14 (4). P. 529–551.
  24. Vedeneev V., Zayko J. On absolute instability of free jets // J. Phys.: Conf. Ser. 2018. Vol. 1129. Paper 012037.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences