Synthesis of Tetraoxacalixarenes Based on Ethyl Pentafluorobenzoate. Effect of Solvent Polarity and Nature of the Base

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The direction of reaction of ethyl pentafluorobenzoate with orcinol depends largely on the polarity of the solvent and the nature of the base. In acetonitrile the reaction proceeds exclusively in the para-position of ethyl pentafluorobenzoate, while in the dioxane–Na2CO3 system the products of substitution of fluorine atoms in the ortho-position are predominantly formed. The reaction of triphenyl with orcinol in the dioxane–K2CO3 system leads to the formation of a mixture of possible fluorine-containing isomeric tetraoxacalixarenes. The corresponding fluorine-containing tetraoxacalixarenes with carboxyl group were obtained by hydrolysis of ester groups.

作者简介

H.-Z. Han

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University

Email: kovtonuk@nioch.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

V. Kovtonyuk

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kovtonuk@nioch.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

Yu. Gatilov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: kovtonuk@nioch.nsc.ru
ORCID iD: 0000-0002-4128-7293
俄罗斯联邦, Novosibirsk, 630090

V. Krasnov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: kovtonuk@nioch.nsc.ru
ORCID iD: 0000-0002-5387-8365
俄罗斯联邦, Novosibirsk, 630090

参考

  1. Maes W., Dehaen W. // Chem. Soc. Rev. 2008. Vol. 37. N 11. P. 2393. doi: 10.1039/B718356A
  2. Wang M.X. // Chem. Commun. 2008. N 38. P. 4541. doi: 10.1039/B809287G
  3. Wang M.X. // Acc. Chem. Res. 2012. Vol. 45. N 2. P. 182. doi: 10.1021/ar200108c
  4. Hudson R., Katz J.L. In: Calixarenes and Beyond / Eds. P. Neri, J.L. Sessler, M.X. Wang. Cham: Springer International Publishing, 2016. P. 399. doi 10.1007/ 978-3-319-31867-7
  5. Dey S., Kumar A., Mondal P.K., Chopra D., Roy R., Jindani S., Ganguly B., Mayya C., Bhatia D., Jain V.K. // Sci. Rep. 2022. Vol. 12. P. 17119. doi: 10.1038/s41598-022-21407-w
  6. Yang H.-B., Wang D.-X., Wang Q.-Q., Wang M.-X. // J. Org. Chem. 2007. Vol. 72. N 10. P. 3757. doi: 10.1021/jo070001a
  7. Sang Q., Yang J. // Chin. J. Chem. 2012. Vol. 30. N 7. P. 1410. doi: 10.1002/cjoc.201200057
  8. Panchal M., Kongor A., Athar M., Mehta V., Jha P.C., Jain V.K. // New J. Chem. 2018. Vol. 42. P. 311. doi: 10.1039/C7NJ02828H
  9. Dong P.-P., Liu Y.-Y., Peng Q.-C., Li H.-Y., Li K., Zang S.-Q., Tang B.-Z. // Dalton Trans. 2023. Vol. 52. N 7. P. 1913. doi: 10.1039/d2dt03382h
  10. Luo N., Ao Y.-F., Wang D.-X., Wang Q.-Q. // Chem. Asian J. 2021. Vol. 16. N 22. P. 3599. doi: 10.1002/asia.202100920
  11. Genc H.N. // RSC Adv. 2019. Vol. 9. N 36. P. 2163. doi: 10.1039/C9RA03029H
  12. Sommer N., Staab H.A. // Tetrahedron. Lett. 1966. Vol. 7. N 25. P. 2837. doi: 10.1016/S0040-4039(01)99870-3
  13. Ma J.-X., Fang X., Xue M., Yang Y. // Org. Biomol. Chem. 2019. Vol. 17. N 20. P. 5075. doi: 10.1039/C9OB00613C
  14. Wang D.-X., Wang Q.-Q., Han Y.-C., Wang Y.-L., Huang Z.-T., Wang M.-X // Chem. Eur. J. 2010. Vol. 16. N 44. P. 13053. doi: 10.1002/chem.201002307
  15. Chambers R.D., Hoskin P.R., Kenwright A.R., Khalil A., Richmond P., Sandford G., Yufit D.S., Howard J.A.K. // Org. Biomol. Chem. 2003. Vol. 1. N 12. P. 2137. doi: 10.1039/B303443G
  16. Chambers R.D., Khalil A., Richmond P., Sandford G., Yufit D.S., Howard J.A.K. // J. Fluor. Chem. 2004. Vol. 125. N 5. P. 715. doi: 10.1016/j.jfluchem.2003.12.007
  17. Kovtonyuk V.N., Gatilov Y.V. // J. Fluor. Chem. 2017. Vol. 199. P. 52. doi: 10.1016/j.jfluchem.2017.04.010
  18. Kovtonyuk V.N., Gatilov Y.V., Salnikov G.E., Amosov E.V. // J. Fluor. Chem. 2019. Vol. 222–223. P. 59. doi 10.1016/ j.jfluchem.2019.04.011
  19. Brook D.M. // J. Fluorine Chem. 1997. Vol. 86. N 1. P. 1. doi: 10.1016/S0022-1139(97)00006-7
  20. Кобрина Л.С., Фурин Г.Г., Якобсон Г.Г. // ЖОрХ 1970. Т. 6. № 3. С. 512.
  21. Han H.-Z., Kovtonyuk V.N., Gatilov Y.V., Andreev R.V. // J. Fluor. Chem. 2022. Vol. 261–262. Art. no. 110022. doi: 10.1016/j.jfluchem.2022.110022
  22. Ковтонюк В.Н., Хань Х., Гатилов Ю.В. // ЖОрХ 2020. Т. 56. № 7. С. 1030; Kovtonyuk V.N., Han H.-Z., Gatilov Y.V. // Russ. J. Org. Chem. 2020. Vol. 56. N 7. P. 1153. doi: 10.1134/S1070428020070052
  23. Rossom W.V., Kishore L., Robeyns K., Meervelt L.V., Dehaen W., Maes W. // Eur. J. Org. Chem. 2010. N 21. P. 4122. doi: 10.1002/ejoc.201000460
  24. Han H.-Z., Kovtonyuk V.N., Gatilov Y.V., Andreev R.V., Nefedov A.A. // J. Fluor. Chem. 2024. Vol. 273. Art. no. 110235. doi: 10.1016/j.jfluchem.2023.110235
  25. Wang Q.-Q., Wang D.-X., Zheng Q.-Y., Wang M.-X. // Org. Lett. 2007. Vol. 9. N 15. P. 2847. doi: 10.1021/ol0710008
  26. Pan S., Wang D.-X., Zhao L., Wang M.-X. // Tetrahedron 2012. Vol. 68. N 46. P. 9464. doi: 10.1016/j.tet.2012.08.069
  27. Bruker AXS Inc. APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11); Bruker Advanced X-ray Solutions: Madison, WI, USA, 2000–2012.
  28. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. Pt. 1. P. 3. doi: 10.1107/S2053229614024218

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024