Синтез гибридных молекул на основе напряженных полициклических углеводородов и фуллерена С60: применение тонких пленок на их основе в органической электронике
- Авторы: Ахметов А.Р.1, Аминов Р.И.1, Муллагалиев И.Н.2, Салихов Р.Б.2
- 
							Учреждения: 
							- Институт нефтехимии и катализа Уфимского федерального исследовательского центра Российской академии наук
- Уфимский университет науки и технологий
 
- Выпуск: Том 93, № 9 (2023)
- Страницы: 1315-1325
- Раздел: Статьи
- URL: https://rjpbr.com/0044-460X/article/view/667309
- DOI: https://doi.org/10.31857/S0044460X23090019
- EDN: https://elibrary.ru/WXKWSB
- ID: 667309
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Впервые синтезированы гибридные молекулы на основе фуллерена С60 и напряженных полициклических углеводородов с применением реакции Бингеля-Хирша. Получены тонкие пленки на основе синтезированных гибридных соединений и исследована морфология поверхности этих пленок. На основе тонких пленок аддуктов фуллерена С60, содержащих в своем составе фрагменты напряженных полициклических углеводородов, изготовлены органические полевые транзисторы. Измерены вольтамперные характеристики транзисторов и рассчитаны подвижности носителей заряда.
			                Об авторах
А. Р. Ахметов
Институт нефтехимии и катализа Уфимского федерального исследовательского центра Российской академии наук
														Email: ahmetov_arslan@mail.ru
				                					                																			                												                														
Р. И. Аминов
Институт нефтехимии и катализа Уфимского федерального исследовательского центра Российской академии наук
И. Н. Муллагалиев
Уфимский университет науки и технологий
Р. Б. Салихов
Уфимский университет науки и технологий
Список литературы
- Tuktarov A.R., Salikhov R.B., Khuzin A.A., Popod'ko N.R., Safargalin I.N., Mullagaliev I.N., Dzhemilev U.M. // RSC Adv. 2019. Vol. 9. P. 7505. doi: 10.1039/C9RA00939F
- Robin M., Harnois M., Molard Y., Jacques E. // Org. Electr. 2016. Vol. 39. P. 214. doi: 10.1016/j.orgel.2016.10.004
- Zhou K., Dong H., Zhang H.L., Hu W. // Phys. Chem. Chem. Phys. 2014. Vol. 16. P. 22448. doi: 10.1039/C4CP01700E
- Wang C., Dong H., Hu W., Liu Y., Zhu D. // Chem. Rev. 2012. Vol. 112. P. 2208. doi: 10.1021/cr100380z
- Sadretdinova Z.R., Akhmetov A.R., Salikhov R.B., Mullagaliev I.N., Salikhov T.R. // Mend. Comm. 2023. Vol. 33. P. 320. doi: 10.1016/j.mencom.2023.04.007
- Chen L.-M., Hong Z., Li G., Yang Y. // Adv. Mater. 2009. Vol. 21. P. 1434. doi: 10.1002/adma.200802854
- Brabec C.J., Gowrisanker S., Halls I.I.M., Laird D., Jia S., Williams S.P. // Adv. Mater. 2010. Vol. 22. P. 3839. doi: 10.1002/adma.200903697
- Nelson J. // Mater. Today. 2011. Vol. 14. P. 462. doi: 10.1016/S1369-7021(11)70210-3
- Dang M.T., Hirsch L., Wantz G. // Adv. Mater. 2011. Vol. 23. P. 3597. doi: 10.1002/adma.201100792
- Han S.H., Kim G.M., Oh S.Y. // J. Nanosci. Nanotech. 2015. Vol. 15. P. 5446. doi: 10.1166/jnn.2015.10371
- Брень В.А., Дубоносов А.Д., Минкин В.И., Черноиванов В.А. // Усп. хим. 1991. Т. 60. С. 913
- Bren' V.A., Dubonosov A.D., Minkin V.I., Chernoivanov V.A. // Russ. Chem. Rev. 1991. Vol. 60. P. 451. doi: 10.1070/RC1991v060n05ABEH001088
- Дубоносов А.Д., Брень В.А., Черноиванов В.А. // Усп. хим. 2002. Т. 71. С. 1040
- Dubonosov A.D., Bren V.A., Chernoivanov V.A. // Russ. Chem. Rev. 2002. Vol. 71. P. 917. doi: 10.1070/RC2002v071n11ABEH000745
- Lorenz P., Hirsch A. // Chem. Eur. J. 2020. Vol. 26. P. 5220. doi: 10.1002/chem.201904679
- Bonfantini E.E., Officer D.L. // J. Chem. Soc. Chem Commun. 1994. P. 1445. doi: 10.1039/C39940001445
- Laine P., Marvaud V., Gourdon A., Launay J.-P., Argazzi R., Bignozzi C.-A. // Inorg. Chem. 1996. Vol. 35. P. 711. doi: 10.1021/ic9507225
- Fraysse S., Coudret C., Launay J.-P. // Eur. J. Inorg. Chem. 2000. P. 1581. doi: 10.1002/10990682(200007)2000:7<1581::AIDEJIC1581>3.0.CO;2-2
- Morino S., Watanabe T., Magaya Y., Yamashita T., Horie K., Nishikubo T. // J. Photopolym. Sci. Technol. 1994. Vol. 7. P. 121. doi: 10.2494/photopolymer.7.121
- Takahashi S., Samata K., Muta H., Machida S., Horie K. // Appl. Phys. Lett. 2001. Vol. 78. P. 13. doi: 10.1063/1.1336164
- Herges R., Reif W. // Lieb. Ann. Chem. 1996. P. 761. doi: 10.1002/jlac.199619960519
- Starck F., Jones P.G., Herges R. // Eur. J. Org. Chem. 1998. P. 2533. doi: 10.1002/(SICI)10990690(199811)1998:11<2533::AIDEJOC2533>3.0.CO;2-Q
- Harada Y., Hatakeyama J., Kawai Y., Sasago M., Endo M., Kishimura S., Maeda K., Ootani M., Komoriya H. Pat. US 6.824.955.2004.
- Myers H.K., Schneider A., Suld G. Pat. US 4207080 (1980).
- Dzhemilev U.M., Khusnutdinov R.I., Aminov R.I., Tomilov Yu.V., Nefedov O.M., Kurbatov V.E., Vinogradova M.E., Tupakhina E.A. Pat. RU 2640204C2.2017.
- Schrauzer G.N. // Tetrahedron Lett. 1970. P. 543. doi: 10.1016/S0040-4039(01)97764-0
- Bingel C. // Chem. Ber. 1993. Vol. 126. P. 1957. doi: 10.1002/cber.19931260829
- Camps X., Hirsch A. // J. Chem. Soc. Perkin Trans. 1. 1997. P. 1595. doi: 10.1039/A702055D
- Hirsch A., Vostrowsky O. // Eur. J. Org. Chem. 2001. Vol. 5. P. 829. doi: 10.1002/10990690(200103)2001:5<829::AID-EJOC829>3.0.CO;2-V
- Yan W., Seifermann S.M., Pierrat P., Bräse S. // Org. Biomol. Chem. 2015. Vol. 13. P. 25. doi: 10.1039/C4OB01663G
- Palacios-Corella M., Ramos-Soriano J., Souto M., Ananias D., Calbo J., Ortí E., Illescas B.M., Clemente-León M., Martín N., Coronado E. // Chem. Sci. 2021. Vol. 12. P. 757. doi: 10.1039/D0SC05875K
- Xing Z., Li S.-H., Hui Y., Wu B.-S., Chen Z.-C., Yun D.-Q., Deng L.-L., Zhang M.-L., Mao B.-W., Xie S.-Y., Huang R.-B., Zheng L.-S. // Nano Energy. 2020. Vol. 74. P. 104859. doi: 10.1016/j.nanoen.2020.104859
- Аминов Р.И., Каримова И.М., Хуснутдинов Р.И. // ЖОрХ. 2020. Т. 56. С. 1431
- Aminov R.I., Karimova I.M., Khusnutdinov R.I. // Russ. J. Org. Chem. 2020. Vol. 56. P. 1595. doi: 10.1134/S1070428020090158
- Lin M.-C., Yeh S.-J., Chen I-R., Lin G. // Protein J. 2011. Vol. 30. P. 220. doi: 10.1007/s10930-011-9323-3
- Khusnutdinov R.I., Egorova T.M., Khalilov L.M., Meshcheriakova E.S., Dzhemilev U.M. // Synthesis. 2018. Vol. 50. P. 1555. doi: 10.1055/s-0036-1591881
- Hollowood F.S., McKervey M.A., Hamilton R., Rooney J.J. // J. Org. Chem. 1980. Vol. 45. P. 4954. doi: 10.1021/jo01312a026
- Хуснутдинов Р.И., Муслимов З.С., Джемилев У.М., Нефедов О.М. // Изв. АН. Сер. xим. 1993. Т. 4. С. 728
- Khusnutdinov R.I., Muslimov Z.S., Dzhemilev U.M., Nefedov O.M. // Russ. Chem. Bull. 1993. Vol. 42. P. 692. doi: 10.1007/BF00704004
- Джемилев У.М., Ахметов А.Р., Хузин А.А., Дьяконов В.А., Джемилева Л.У., Юнусбаева М.М., Халилов Л.М., Туктаров А.Р. // Изв. АН. Сер. xим. 2019. Т. 5. С. 1036
- Dzhemilev U.M., Akhmetov A.R., Khuzin A.A., D'yakonov V.A., Dzhemileva L.U., Yunusbaeva M.M., Khalilov L.M., Tuktarov A.R. // Russ. Chem. Bull. 2019. Vol.68. P. 1036. doi: 10.1007/s11172-019-2516-1
- Salikhov R.B., Zilberg R.A., Mullagaliev I.N., Salikhov T.R., Teres Y.B. // Mendeleev Commun. 2022. Vol.32. P. 520. doi 10.1016/j. mencom.2022.07.029
- Tuktarov A.R., Salikhov R.B., Khuzin A.A., Safargalin I.N., Mullagaliev I.N., Venidiktova O.V., Valova T.M., Barachevsky V.A., Dzhemilev U.M. // Mendeleev Commun. 2019. Vol. 29. P. 160. doi https: //doi.org/10.1016/j.mencom.2019.03.014
- Dong J., Sami S., Balazs D.M., Alessandri R., Jahan, F., Qiu L., Marrink S.J., Havenith R.W.A., Hummelen J.C., Loi M.A., Portale G. // J. Mater. Chem. 2021. Vol. 100. P. 16217. doi: 10.1039/D1TC02753K
- Xing Z., Li S.-H., Hui Y., Wu B-S., Chen Z.-C., Yun D.-Q., Deng L.-L., Zhang M.-L., Mao B.-W., Xie S.-Y., Huang R.-B., Zheng L.-S. // Nano Energy. 2020. Vol. 74. P. 104859. doi: 10.1016/j.nanoen.2020.104859
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

