Solubility of Curcumin in Water and Aqueous Solutions of Tetradecyltriphenylphosphonium Bromide with Formation of Protomicelles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

By spectrophotometry studied the interaction of curcumin, a biologically important molecule, with tetradecyltriphenylphosphonium bromide in an aqueous environment depending on the concentration of surfactants in the premicellar and micellar ranges. Experiments were carried out with saturated solutions of curcumin under conditions of thermodynamic equilibrium of the solution with the dye precipitate. The solubility of curcumin in water has been clarified (about 2 µM). It has been shown that the process of solubilization of curcumin begins in the premicellar region of surfactants, is enhanced in the presence of adsorption protomicelles, but is most effective in the presence of ordinary micelles. The extinction coefficients of curcumin monomers in dimethyl sulfoxide, water and micellar solutions are determined. Based on experimental data, the limiting value of the solubilization capacity tetradecyltriphenylphosphonium bromide with respect to curcumin is calculated. The conductometry was used to determine the values of the critical micelle concentration (CMC) of the studied surfactant in the presence and absence of curcumin and confirm the theoretical conclusion that the CMC of the surfactants is reduced by the solubilizate.

Texto integral

Acesso é fechado

Sobre autores

T. Movchan

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: movchan_tamara@mail.ru
ORCID ID: 0000-0001-6249-6732
Rússia, Moscow, 119071

A. Rusanov

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences; Saint Petersburg State University

Email: movchan_tamara@mail.ru
ORCID ID: 0000-0002-8972-1220
Rússia, Moscow, 119071; Saint Petersburg, 199034

E. Plotnikova

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: movchan_tamara@mail.ru
ORCID ID: 0000-0002-3265-3917
Rússia, Moscow, 119071

Bibliografia

  1. Русанов А.И., Мовчан Т.Г., Плотникова Е.В. // Докл. АН. Химия, науки о материалах. 2020. Т. 495. С. 60. doi: 10.31857/S2686953520060126; Rusanov A.I., Movchan T.G., Plotnikova E.V. // Dokl. Phys. Chem. 2020. Vol. 495. P. 181. doi: 10.1134/S0012501620120027
  2. Мовчан Т.Г., Русанов А.И., Плотникова Е.В. // Коллоид. ж. 2021. Т. 83. С. 335. doi: 10.31857/S0023291221030125; Movchan T.G., Rusanov A.I., Plotnikova E.V. // Colloid J. 2021. Vol. 83. N 3. P. 356. doi: 10.1134/S1061933X21030121
  3. Zhu P.W., Napper D.H. // Colloids Surf. (A). 1996. Vol. 113. P. 145. doi: 10.1016/0927-7757(96)03520-0
  4. Мовчан Т.Г., Русанов А.И., Плотникова Е.В. // Коллоид. ж. 2021. Т. 83. С. 443. doi: 10.31857/S0023291221040066; Movchan T.G., Rusanov A.I., Plotnikova E.V. // Colloid J. 2021. Vol. 83. N 3. P. 468. doi: 10.1134/S1061933X21040062
  5. Rusanov A.I., Movchan T.G., Plotnikova E.V. // Molecules. 2022. Vol. 27. P. 7667. doi: 10.3390/molecules27227667
  6. Ghoran S.H., Calcaterra A., Abbasi M., Taktaz F., Nieselt K., Babaei E. // Molecules. 2022. Vol. 27. P. 5236. doi: 10.3390/molecules27165236
  7. Zahra M., Hadi F., Maqbool T., Sultana H., Abid F., Aslam M.A., Ahmad M., Muhammad Sh., ul Hassan M.O. // J. Health Rehab. Res. 2024. Vol. 4. N 2. P. 1738. doi: 10.61919/jhrr.v4i2.1159
  8. Karimpour M., Hosseinpour Feizi M.A., Mahdavi M., Krammer B., Verwanger T., Najafi F., Babaei E. // Phytomedicine. 2019. Vol. 57. P. 183.
  9. Kazakova O., Lipkovska N., Barvinchenko V. // Spectrochim. Acta (A). 2022. Vol. 277. P. 121287. doi 10.1016/ j.saa.2022.121287
  10. Priyadarsini K.I. // Molecules. 2014. Vol. 19. P. 20091. doi: 10.3390/molecules191220091
  11. Khopde S.M., Priyadarsini K.I., Palit D.K., Mukherjee T. // Photochem. Photobiol. 2000. Vol. 72. N 5. P. 625. doi: 10.1562/0031-8655(2000)072<0625:eosote>2.0.co;2
  12. Salem M., Rohani S., Gillies E.R. // RSC Adv. 2014. Vol. 4. P. 10815. doi: 10.1039/c3ra46396f
  13. Mondal S., Ghosh S., Satya P., Moulik. S.P. // J. Photochem. Photobiol. (B). 2016. Vol. 158. P. 212. doi 10.1016/ j.jphotobiol.2016.03.004
  14. Chignell C.F., Bilski P., Reszka K.J., Motten A.G., Sik R.H., Dahl T.A. // Photochem. Photobiol. 1994. Vol. 59. N 3. P. 295. doi: 10.1111/j.1751-1097.1994.tb05037.x
  15. Соколова Ю.Д., Челнакова П.Н., Коновалов Е.В. // Universum: Химия и биология: электрон. научн. журн. 2016. № 12(30).
  16. Aboudiab B., Tehrani-Bagha A.R., Patra D. // Colloids Surf. (A). 2020. Vol. 592. P. 124602. doi 10.1016/ j.colsurfa.2020.124602
  17. Tonnesen H.H., Masson M., Loftsson Th. // Int. J. Pharm. 2002. Vol. 244. P. 127. doi: 10.1016/S037-5173(02)00323-X
  18. Kharat M., Du Z., Zhang G., McClements D.J. // J. Agric. Food Chem. 2017. Vol. 65. P. 1525. doi: 10.1021/acs.jafc.6b04815
  19. Mohanty S., Tirkey B., Jena S.R., Samanta L., Subuddhi U. // Langmuir. 2023. Vol. 39. P. 1852. doi: 10.1021/acs.langmuir.2c02797
  20. Barvinchenko V., Kazakova O., Lipkovska N. // J. Surfact Deterg. 2024. P. 1. doi: 10.1002/jsde.12756
  21. Sharma R., Jani D. // Phys. Chem. Tenside Surf. Det. 50. 2013. Vol. 4. doi: 10.3139/113.110261
  22. Dan Ke-D., Wang X., Yang Q., Niu Y., Chai S., Chen Z., An X., Shen W. // Langmuir. 2011. Vol. 27. P. 14112. doi: 10.1021/la203592j
  23. Гайнанова Г.А., Валеева Ф.Г., Кушназарова Р.А., Бекмухаметова А.М., Захаров С.В., Миргородская А.Б., Захарова Л.Я. // ЖФХ. 2018. Т. 92. № 7. С. 1158; Gaynanova G.A., Valeeva F.G., Kushnazarova R.A., Bekmukhametova A.M., Zakharov S.V., Mirgorodskaya A.B., Zakharova L.Ya. // Russ. J. Phys. Chem. (A). 2018. Vol. 92. P. 1400. doi: 10.1134/S0036024418070129
  24. Наумова К.А., Дементьева О.В., Зайцева А.В., Рудой В.М. // Коллоид. ж. 2019. Т. 81. № 4. С. 478; Naumova K.A., Dementʼeva O.V., Zaitseva A.V., Rudoy V.M. // Colloid J. 2019. Vol. 81. N 4. P. 416. doi: 10.1134/S1061933X19040094
  25. Dutta A., Boruah B., Manna A.K., Gohain B., Saikia P.M., Dutta R.K. // Spectrochim. Acta (A). 2013. Vol. 104. P. 150. doi: 10.1016/j.saa.2012.11.048
  26. Kumar A., Kansal S.K., Chaudhary G.R., Mehta S.K. // J. Chem. Thermodyn. 2016. Vol. 93. P. 115. doi 10.1016/ j.foodchem.2015.12.077
  27. Mondal S., Ghosh S. // Chem. Phys. Lett. 2021. Vol. 762. P. 138144. doi: 10.1016/j.cplett.2020.138144
  28. Gainanova G.A., Vagapova G.J., Syakaev V.V., Ibragimova A.R., Valeeva F.G., Tudriy E.V., Galkina I.V., Kataeva O.N., Zakharova L.Ya., Latypov Sh.K., Konovalov A.I. // J. Colloid Int. Sci. 2012. Vol. 367. P. 327. doi: 10.1016/j.jcis.2011.10.074
  29. Орлова О.В., Сидуллина С.А., Егорова С.Н. // Медицинские науки. 2013. Т. 5. С. 115.
  30. Leung M.H.M., Colangelo H., Kee T.W. // Langmuir. 2008. Vol. 24. P. 5672. doi: 10.1021/la800780w
  31. Русанов А.И. // Коллоид. ж. 2021. Т. 83. С. 98; Rusanov A.I. // Colloid J. 2021. Vol. 83. P. 127. doi: 10.1134/S1061933X20060113
  32. Васильева Э.А., Валеева Ф.Г., Елисеева О.Е., Лукашенко С.С., Сайфутдинова М.Н., Захаров В.М., Гаврилова Е.Л., Захарова Л.Я. // Макрогетероциклы. 2017. Т. 10. Вып. 2. С. 182; Vasilieva E.A., Valeeva F.G., Yeliseeva O.E., Lukashenko S.S., Saifutdinova M.N., Zakharov V.M., Gavrilova E.L., Zakharova L.Ya. // Macroheterocycles. 2017. Vol. 10. P. 182. doi: 10.6060/mhc170509v

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (47KB)
3. Fig. 1. Absorption spectra of curcumin in DMSO solutions at optical path length (l) of 1 cm and drug concentrations c2 = 1.5 (1), 3.6 (2), 5.5 (3), 10.6 (4) and 19.3 μM (5).

Baixar (68KB)
4. Fig. 2. Absorption spectra of aqueous solutions of curcumin at concentrations of the drug c2, μM: (a) 1.3 (1 and its components at decomposition 11 and 12); (b) 8 (2), 11 (3), 13.8 (4) and 23 (5). DMSO content, wt %: 0.019 (1), 0.066 (2), 0.092 (3), 0.198 (4) и 0.35 (5). l = 1 cm.

Baixar (112KB)
5. Fig. 3. Concentration dependence of the electrical conductivity κ(c1) of aqueous solutions of TDPPB: (a) without curcumin (curves 1 and 2), (b) in the presence of curcumin (1-3).

Baixar (96KB)
6. Fig. 4. Absorption spectra of curcumin in samples of aqueous dye system (a) with 2 (1), 7 (2), 9 (3) and 21 days (4) exposure; decomposition of spectrum 1 into components 11 and 12 (b). l = 1 cm.

Baixar (117KB)
7. Fig. 5. Absorption spectra of aqueous saturated solution of curcumin in the presence of TDPPB at concentrations of c1, mM: (a) 0. 1 (1), 0.18 (2), 0.25 (3) and 0.29 (4); (b) 0.36 (1), 0.4 (2), 0.44 (3), 0.5 (4) and 0.6 (5) at l = 1 cm; (c) 0.75 (1), 0.96 (2), 1.3 (3) and 1.9 (4) at l = 0.2 cm.

Baixar (151KB)
8. Fig. 6. Dependence of optical density (A / l) at l = 1 cm on the c1 concentration of TDTFPB in saturated curcumin solution in the intervals c1 = 0.1-0.5 (a) and 0.1-2 mM (b).

Baixar (82KB)
9. Fig. 7. Absorption spectra of curcumin in 1.9 mM TDPPB solutions at c2 drug concentrations, μM: 2.6 (1), 5.1 (2), 10 (3), 15 (4), 20 (5) at l = 1 cm.

Baixar (70KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024