Effect of the Counterion of Styrenesulfonic and Maleic Acid Copolymer on the Properties of Its Complexes with Polyvinyl Alcohol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, the interaction of a copolymer of styrene sulfonic and maleic acids in acidic and salt forms with polyvinyl alcohol in a wide concentration range was studied using light scattering and viscometry methods, and it was shown that the nature of the copolymer counterion has a significant effect on the properties of the resulting interpolymer complexes. In dilute solutions, polyvinyl alcohol interacts only with the salt form of the copolymer. In semi-dilute solutions, both forms of the copolymer interact with polyvinyl alcohol, but water-soluble complexes for all ratios of the copolymer and polyvinyl alcohol are formed only with the participation of the acid form of the copolymer.

Full Text

Restricted Access

About the authors

D. E. Ochenkov

M. V. Lomonosov Moscow State University

Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

S. A. Pantsernaya

M. V. Lomonosov Moscow State University

Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

A. A. Neudakhina

M. V. Lomonosov Moscow State University

Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

R. V. Grossman

M. V. Lomonosov Moscow State University

Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

O. A. Pyshkina

M. V. Lomonosov Moscow State University

Author for correspondence.
Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

V. G. Sergeyev

M. V. Lomonosov Moscow State University

Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

E. A. Litmanovich

M. V. Lomonosov Moscow State University

Email: pyshkina@gmail.com
Russian Federation, Moscow, 119992

References

  1. Teodorescu M., Bercea M., Morariu S. // Colloids Surf. (A). 2018. Vol. 559. P. 325. doi: 10.1016/j.colsurfa.2018.09.062
  2. Eckelt А., Eckelt J., Wolf B.A.// Macromol. Rapid Commun. 2012. Vol. 33. Р. 1933. doi: 10.1002/marc.201200431
  3. Chasib K.F., Kadhim B.M. // Recent Adv. Petrochem. Sci. 2018. Vol. 6. N 5. Р. 555699. doi 10.19080 RAPSCI.2018.06.555699
  4. Wanchoo R., Narula M., Thakur A. // J. Polym. Mater. 2007. Vol. 24. P. 57.
  5. Tang X., Ma N., Xu H., Zhang H., Zhang Q., Cai L., Otake K., Yin P., Kitagawa S., Horike S., Gu C. // Mater. Horiz. 2021. Vol. 8. P. 3088. doi: 10.1039/d1mh01147b
  6. Chiu Y.-H., Huang T.-Y., Lin K.-T., Wan K.-C., Huang Y.-H., Yang Y.-P., He C.-T., Wei H.-Y., Hsu T.-C., Su C.-J., Wang C.-A., Huang Y.-C., Ruan J., Jeng U.-S., Hsu B.B.Y. // MRS Commun. 2024. Vol. 14. P. 1395. doi: 10.1557/s43579-024-00654-0
  7. Тагер А.А., Аникеева А.А., Адамова Л.В., Андреева В.М., Кузьмина Т.В., Цилипоткина М.В. // Высокомол. соед. (А). 1971. Т. 13. № 3. С. 659; Tager A.A., Anikeyeva A.A., Adamova L.V., Andreyeva V.M., Kuz’mina T.A., Tsilipotkina M.V. // Polym. Sci. USSR. 1971. Vol. 13. N 3. P. 751. doi: 10.1016/0032-3950(71)90042-6
  8. Hara C., Matsuo M. // Polymer. 1995. Vol. 36. N 3. P. 603. doi: 10.1016/0032-3861(95)91570-W
  9. Кленин В.И., Федусенко И.В., Клохтина Ю.И. // Высокомол. соед. (А). 2003. Т. 45. № 12. С. 2054; Klenin J., Fedusenko I.V., Klokhtina Yu.I. // Polym. Sci. (A). 2003. Vol. 45. N 12. Р. 1231.
  10. Василевская В.В., Стародубцев С.Г., Хохлов А.Р. // Высокомол. соед. (Б). 1987. Т. 29. № 12. С. 930.
  11. Василевская В.В., Хохлов А.Р. // Высокомол. соед. (А). 1986. Т. 28. № 2. С. 316; Vasilevskaya V.V., Khokhlov A.R. // Polym. Sci. USSR. 1986. Vol. 28. N 2. P. 348. doi: 10.1016/0032-3950(86)90090-0
  12. Fredrickson G.H., Xie S., Edmund J., Le M.L., Sun D., Grzetic D.J., Vigil D.L., Delaney K.T., Chabinyc M.L., Segalman R.A. // ACS Polym. Au. 2022. Vol. 2. P. 299. doi: 10.1021/acspolymersau.2c00026
  13. Kang M.-S., Choi Y.-J., Moon S.-H. // J. Membr. Sci. 2002. Vol. 207. P. 157. doi: 10.1016/S0376-7388(02)00172-2
  14. Kim D.S., Guiver M.D., Nam S.Y., Yun T.I., Seo M.Y., Kimc S.J., Hwang H.S., Rhim J.W. // J. Membr. Sci. 2006. Vol. 281. Р. 156. doi: 10.1016/j.memsci.2006.03.025
  15. Dobrynin A.V., Rubinstein M., Colby R.H. // Macromolecules. 1995. Vol. 28. N 6. P. 1859. doi: 10.1021/ma00110a021
  16. Doi M., Edwards S.F. The Theory of Polymer Dynamics. Oxford: Clarendon Press, 1988.
  17. Rubinstein M., Colby R.H., Dobrynin A.V. // Phys. Rev. Lett. 1994. Vol. 73. N 20. P. 2776. doi 10.1103/ PhysRevLett.73.2776
  18. Tam K.C., Tiu G. // J. Non-Newtonian Fluid Mech. 1993. Vol. 46. N 2–3. P. 275.
  19. Dobrynin A.V., Rubinstein M. // Prog. Polym. Sci. 2005. Vol. 30. Р. 1049. doi: 10.1016/j.progpolymsci.2005.07.006
  20. Литманович Е.А., Пышкина О.А., Оченков Д.Е., Панцерная С.А., Гроссман Р.В., Савченкова В.Е., Жилкин М.В., Сергеев В.Г. // Высокомол. соед. (А). 2023. Т. 6. № 6.; Litmanovich E.A. Pyshkina O.A., Ochenkov D.E., Pantsernaya S.A., Grossman R.V., Savchenkova V.E., Zhilkin M.V., Sergeyev V.G. // Polym. Sci. (A). 2023. Vol. 65. N 6. Р. 616. doi: 10.1134/S0965545X23600588
  21. Бартенев Г.М., Вишницкая Л.А. // Высокомол. соед. 1964. Т. 6. № 4. P. 751; Bartenev G.M., Vishnitskaya L.A. // Polym. Sci. USSR. 1964. Vol. 6. N 4. P. 824. doi: 10.1016/0032-3950(64)90236-9
  22. Тагер А.А. Физико-химия полимеров. М.: Научный мир, 2007.
  23. Rubinstein M., Colby R.H. Polymer physics. New York: Oxford University Press, 2003. Vol. 23.
  24. Филякин А.М., Литманович Е.А., Петров О.Б., Касаикин В.А. // Высокомол. соед. (А). 2003. Т. 45. № 9. С. 15174; Filyakin A.M., Litmanovich E.A., Petrov O.B., Kasaikin V.A. // Polym. Sci. (A). 2003. Vol. 45. N 6. Р. 616.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of experimental and calculated additive values of the logarithm of dynamic viscosity on the composition of mixtures of PVS–PSMNA. The dotted lines correspond to the calculated additive dependencies, while the solid lines are based on experimental data. The total polymer concentration is 10% by weight.

Download (31KB)
3. Fig. 2. The dependences of the compositions of the upper and lower phases on the composition of the mixture of PVS–PSMNA.

Download (27KB)
4. Fig. 3. Static light scattering data for solutions of PSMN, PVS and their mixtures.

Download (32KB)
5. 4. The dependence of the average molecular weight of the mixtures of PVS–PSMN (a) and PVS–PSMNA (b, curve 1) on the mass fraction of the copolymer. For comparison, the calculated additive dependence in the absence of interactions is shown (curve 2).

Download (39KB)
6. 5. Distribution of the scattering amplitude of PVS, PSMN and their mixtures of compositions w = 0.2–0.8 by hydrodynamic radii. The scattering angle is 90°, 25°C.

Download (44KB)
7. 6. Dependence of experimental and calculated additive values of the logarithm of dynamic viscosity on the composition of mixtures of PVS–PSMN. The lines correspond to the calculated additive dependencies, the points correspond to the experimental data. The total polymer concentration is 10% by weight.

Download (27KB)
8. Fig. 7. Schematic representation of the PVS–PSMN complex, dotted lines indicate hydrogen bonds.

Download (14KB)
9. Fig. 8. Dependence of the logarithm of viscosity on the inverse temperature for various compositions [wmas% (WSMNA)] (a) and [w mass% (WSMN)] (b). The total polymer concentration is 10 wt%.

Download (45KB)
10. 9. The dependence of enthalpy (a) and entropy (b) of viscous flow activation on the composition of the polymer solution.

Download (55KB)
11. 10. Dependence of the logarithm of the specific viscosity of PVS (1), PSM (2) and their mixtures with the mass fraction of the copolymer w = 0.2 (3) on the logarithm of the concentration. The arrows show the boundaries of concentration regimes.

Download (31KB)
12. 11. Schematic representation of the structuring of a PVA solution in the crossover region in the presence of copolymer chains.

Download (34KB)

Copyright (c) 2025 Russian Academy of Sciences