DFT modeling of the oxygen electroreduction reaction on SiN3-doped carbon nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermodynamic features and mechanism of the electrocatalytic oxygen reduction reaction were studied using the revPBE0-D3(BJ)/Def2-TZVP method on the example of (6,6)-armchair carbon nanotube doped with a tricoordinated silicon atom and nitrogen atoms of pyridinic and graphitic nature. Irreversible oxidation of the silicon center as a result of the formation of stable oxygen-containing adsorbates was shown. It was found that Si-poisoned structures are capable of participating in the catalysis of the target reaction along two- and four-electron routes at high overpotentials. For a nanotube doped simultaneously with pyridinic and graphitic nitrogens the potential possibility of eliminating the silicon atom from the catalyst composition in the form of orthosilicic acid and the participation of a silicon-free nitrogen-doped framework in the oxygen electroreduction reaction, for which the stage of tautomerization of pyridin-2(1H)-one to pyridin-2-ol is the limiting step was shown.

Full Text

Restricted Access

About the authors

А. V. Kuzmin

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kuzmin@lin.irk.ru
Russian Federation, Irkutsk

References

  1. Wang Y.-J., Long W., Wang L., Yuan R., Ignaszak A., Fang B., Wilkinson D.P. // Energy Environ. Sci. 2018. Vol. 11. P. 258. doi: 10.1039/C7EE02444D
  2. Daud W.R.W., Rosli R.E., Majlan E. H., Hamid S.A.A., Mohamed R., Husaini T. // Renew. Energy. 2017. Vol. 113. P. 620. doi: 10.1016/j.renene.2017.06.027
  3. Popov B.N., Lee J.-W., Kriston A., Kim T. // J. Electrochem. Soc. 2020. Vol. 167. N 5. P. 054512. doi: 10.1149/1945-7111/ab6bc6
  4. Hu X., Yang B., Ke S., Liu Y., Fang M., Huang Z., Min X. // Energy Fuels. 2023. Vol. 37. N 16. P. 11532. doi: 10.1021/acs.energyfuels.3c01265
  5. Hao Y.M., Nakajima H., Inada A., Sasaki K., Ito K. // Electrochim. Acta. 2019. Vol. 301. P. 274. doi 10.1016/ j.electacta.2019.01.108
  6. Wang Y., Wang D., Li Y. // SmartMat. 2021. Vol. 2. P. 56. doi: 10.1002/smm2.1023
  7. Sui S., Wang X., Zhou X., Su Y., Riffat S., Liu C.-j. // J. Mater. Chem. (A). 2017. Vol. 5. P. 1808. doi: 10.1039/C6TA08580F
  8. Xia W., Mahmood A., Liang Z., Zou R., Guo S. // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 2650. doi: 10.1002/anie.201504830
  9. Shantharaja, Giddaerappa, Sannegowda L.K. // Electrochimica Acta. 2023. Vol. 456. P. 142405. doi 10.1016/ j.electacta.2023.142405
  10. Shi Z., Yang W., Gu Y., Liao T., Sunet Z. // Adv. Sci. 2020. Vol. 7. P. 2001069. doi: 10.1002/advs.202001069
  11. Irmawati Y., Prakoso B., Balqis F., Indriyati, Yudianti R., Iskandar F., Sumboja A. // Energy Fuels. 2023. Vol. 37. N 7. P. 4858. doi: 10.1021/acs.energyfuels.2c04272
  12. Osmieri L. // Chem. Eng. 2019. Vol. 3. N 1. P. 16. doi: 10.3390/chemengineering3010016
  13. Wu S., Qu X., Zhu J., Zhao Y., Xiang X., Shang H., Zhang B. // J. Alloys Compd. 2024. Vol. 970. P. 172518. doi: 10.1016/j.ijhydene.2022.05.025
  14. Liu J., Li E., Ruan M., Song P., Xu W. // Catalysts. 2015. Vol. 5. N 3. P. 1167. doi: 10.3390/catal5031167
  15. Asset T., Atanassov P. // Joule. 2020. Vol. 4. P. 33. doi: 10.1016/j.joule.2019.12.002
  16. Ma R., Lin G., Zhou Y., Liu Q., Zhang T., Shan G., Yang M., Wang J. // npj Comput. Mater. 2019. Vol. 5. P. 78. doi: 10.1038/s41524-019-0210-3
  17. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. Vol. 132. P. 104. doi: 10.1016/j.carbon.2018.02.024
  18. Wang Y., Song W., Li M., Wu Z. // J. Electrochem. Soc. 2019. Vol. 166. N 10. P. F670. doi: 10.1149/2.1071910jes
  19. Kuzmin A.V., Shainyan B.A. // ACS Omega. 2020. Vol. 5. N 25. P. 15268. doi: 10.1021/acsomega.0c01303
  20. González I.Z., Valenzuela-Muñiz A.M., Verde-Gómez Y. // Int. J. Hydrog. Energy. 2022. Vol. 47. N 70. P. 30187. doi: 10.1016/j.ijhydene.2022.04.079
  21. Kaare K., Jantson M., Palgrave R., Tsujimoto M., Kuzmin A., Shainyan B., Kruusenberg I. // J. Electroanal. Chem. 2023. Vol. 950. P. 117859. doi 10.1016/ j.jelechem.2023.117859
  22. Ващенко А.В., Кузьмин А.В., Шаинян Б. А. // ЖОХ. 2020. Т. 90. № 3. С. 483. doi: 10.31857/S0044460X20030199; Vashchenko A.V., Kuzmin A.V., Shainyan B.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 3. P. 454. doi: 10.1134/S1070363220030196
  23. Kuzmin A.V., Shainyan B.A. // Mol. Catal. 2024. Vol. 560. P. 114123. doi: 10.1016/j.mcat.2024.114123
  24. Masa J., Zhao A., Xia W., Sun Z., Mei B., Muhler M., Schuhmann W. // Electrochem. Commun. 2013. Vol. 34. P. 113. doi: 10.1016/j.elecom.2013.05.032
  25. Guo D., Shibuya R., Akiba C., Saji S., Kondo T., Nakamura J. // Science. 2016. Vol. 351. N 6271. P. 361. doi: 10.1126/science.aad0832
  26. Neese F. // WIREs Comput. Mol. Sci. 2022. Vol. 12. P. e1606. doi: 10.1002/wcms.1606
  27. Abidin A.F.Z., Hamada I. // Surf. Sci. 2022. Vol. 724. P. 122144. doi: 10.1016/j.susc.2022.122144
  28. Hammer B., Hansen L.B., Nørskov J.K. // Phys. Rev. (B). 1999. Vol. 59. P. 7413. doi: 10.1103/PhysRevB.59.7413
  29. Nørskov J.K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J.R., Bligaard T., Jónsson H. // J. Phys. Chem. (B). 2004. Vol. 108. N 46. P. 17886. doi: 10.1021/jp047349j

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Fragments of model structures of SiN3-doped (6,6)-chair carbon nanotubes SiN3/CNT (a) and SiN3/N3CNT (b).

Download (142KB)
3. Fig.2. Catalytic cycles of 2e- (a) and 4e-routes (b) of the oxygen reduction reaction in an acidic medium.

Download (87KB)
4. Fig.3. Structures of intermediates and free energy profiles of the catalytic cycle of the oxygen reduction reaction on model catalysts SiN3/CNT (a, c) and SiN3/N3CNT (b, d) at three electrode potentials.

Download (400KB)
5. Fig.4. Structures of O2*-adsorbates on Si-poisoned catalysts: Si(O)(OH)N3/CNT (a), Si(OH)2N3/CNT (b), Si(O)(OH)N3/N3CNT (c) and Si(OH)2N3/N3CNT (g). Below the structures are the corresponding values ​​of DE and DG, eV (in parentheses). The DG values ​​calculated using the formula DG(O2*) = 0.99DE + 0.81 are marked in red. The most stable adsorbates are highlighted with a dotted line.

Download (438KB)
6. Fig.5. Free energy profiles of oxygen reduction reaction intermediates on model catalysts Si(O)(OH)N3/CNT (a) and Si(OH)2N3/CNT (b) at U = 0.85 and U = 0 V, respectively.

Download (202KB)
7. Fig.6. Free energy profiles of oxygen reduction reaction intermediates on model catalysts Si(O)(OH)N3/N3CNT (a) and Si(OH)2N3/N3CNT (b) at U = 0.3 V.

Download (234KB)
8. Fig.7. Free energy profile of intermediates of the 4e dissociative route of the oxygen reduction reaction on the model catalyst N3/N3CNT at U = 0.

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences