DFT modeling of the oxygen electroreduction reaction on SiN3-doped carbon nanotubes
- Authors: Kuzmin А.V.1
-
Affiliations:
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 94, No 5 (2024)
- Pages: 649-658
- Section: Articles
- URL: https://rjpbr.com/0044-460X/article/view/667408
- DOI: https://doi.org/10.31857/S0044460X24050123
- EDN: https://elibrary.ru/FJQBHN
- ID: 667408
Cite item
Abstract
The thermodynamic features and mechanism of the electrocatalytic oxygen reduction reaction were studied using the revPBE0-D3(BJ)/Def2-TZVP method on the example of (6,6)-armchair carbon nanotube doped with a tricoordinated silicon atom and nitrogen atoms of pyridinic and graphitic nature. Irreversible oxidation of the silicon center as a result of the formation of stable oxygen-containing adsorbates was shown. It was found that Si-poisoned structures are capable of participating in the catalysis of the target reaction along two- and four-electron routes at high overpotentials. For a nanotube doped simultaneously with pyridinic and graphitic nitrogens the potential possibility of eliminating the silicon atom from the catalyst composition in the form of orthosilicic acid and the participation of a silicon-free nitrogen-doped framework in the oxygen electroreduction reaction, for which the stage of tautomerization of pyridin-2(1H)-one to pyridin-2-ol is the limiting step was shown.
Full Text

About the authors
А. V. Kuzmin
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: kuzmin@lin.irk.ru
Russian Federation, Irkutsk
References
- Wang Y.-J., Long W., Wang L., Yuan R., Ignaszak A., Fang B., Wilkinson D.P. // Energy Environ. Sci. 2018. Vol. 11. P. 258. doi: 10.1039/C7EE02444D
- Daud W.R.W., Rosli R.E., Majlan E. H., Hamid S.A.A., Mohamed R., Husaini T. // Renew. Energy. 2017. Vol. 113. P. 620. doi: 10.1016/j.renene.2017.06.027
- Popov B.N., Lee J.-W., Kriston A., Kim T. // J. Electrochem. Soc. 2020. Vol. 167. N 5. P. 054512. doi: 10.1149/1945-7111/ab6bc6
- Hu X., Yang B., Ke S., Liu Y., Fang M., Huang Z., Min X. // Energy Fuels. 2023. Vol. 37. N 16. P. 11532. doi: 10.1021/acs.energyfuels.3c01265
- Hao Y.M., Nakajima H., Inada A., Sasaki K., Ito K. // Electrochim. Acta. 2019. Vol. 301. P. 274. doi 10.1016/ j.electacta.2019.01.108
- Wang Y., Wang D., Li Y. // SmartMat. 2021. Vol. 2. P. 56. doi: 10.1002/smm2.1023
- Sui S., Wang X., Zhou X., Su Y., Riffat S., Liu C.-j. // J. Mater. Chem. (A). 2017. Vol. 5. P. 1808. doi: 10.1039/C6TA08580F
- Xia W., Mahmood A., Liang Z., Zou R., Guo S. // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 2650. doi: 10.1002/anie.201504830
- Shantharaja, Giddaerappa, Sannegowda L.K. // Electrochimica Acta. 2023. Vol. 456. P. 142405. doi 10.1016/ j.electacta.2023.142405
- Shi Z., Yang W., Gu Y., Liao T., Sunet Z. // Adv. Sci. 2020. Vol. 7. P. 2001069. doi: 10.1002/advs.202001069
- Irmawati Y., Prakoso B., Balqis F., Indriyati, Yudianti R., Iskandar F., Sumboja A. // Energy Fuels. 2023. Vol. 37. N 7. P. 4858. doi: 10.1021/acs.energyfuels.2c04272
- Osmieri L. // Chem. Eng. 2019. Vol. 3. N 1. P. 16. doi: 10.3390/chemengineering3010016
- Wu S., Qu X., Zhu J., Zhao Y., Xiang X., Shang H., Zhang B. // J. Alloys Compd. 2024. Vol. 970. P. 172518. doi: 10.1016/j.ijhydene.2022.05.025
- Liu J., Li E., Ruan M., Song P., Xu W. // Catalysts. 2015. Vol. 5. N 3. P. 1167. doi: 10.3390/catal5031167
- Asset T., Atanassov P. // Joule. 2020. Vol. 4. P. 33. doi: 10.1016/j.joule.2019.12.002
- Ma R., Lin G., Zhou Y., Liu Q., Zhang T., Shan G., Yang M., Wang J. // npj Comput. Mater. 2019. Vol. 5. P. 78. doi: 10.1038/s41524-019-0210-3
- Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. Vol. 132. P. 104. doi: 10.1016/j.carbon.2018.02.024
- Wang Y., Song W., Li M., Wu Z. // J. Electrochem. Soc. 2019. Vol. 166. N 10. P. F670. doi: 10.1149/2.1071910jes
- Kuzmin A.V., Shainyan B.A. // ACS Omega. 2020. Vol. 5. N 25. P. 15268. doi: 10.1021/acsomega.0c01303
- González I.Z., Valenzuela-Muñiz A.M., Verde-Gómez Y. // Int. J. Hydrog. Energy. 2022. Vol. 47. N 70. P. 30187. doi: 10.1016/j.ijhydene.2022.04.079
- Kaare K., Jantson M., Palgrave R., Tsujimoto M., Kuzmin A., Shainyan B., Kruusenberg I. // J. Electroanal. Chem. 2023. Vol. 950. P. 117859. doi 10.1016/ j.jelechem.2023.117859
- Ващенко А.В., Кузьмин А.В., Шаинян Б. А. // ЖОХ. 2020. Т. 90. № 3. С. 483. doi: 10.31857/S0044460X20030199; Vashchenko A.V., Kuzmin A.V., Shainyan B.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 3. P. 454. doi: 10.1134/S1070363220030196
- Kuzmin A.V., Shainyan B.A. // Mol. Catal. 2024. Vol. 560. P. 114123. doi: 10.1016/j.mcat.2024.114123
- Masa J., Zhao A., Xia W., Sun Z., Mei B., Muhler M., Schuhmann W. // Electrochem. Commun. 2013. Vol. 34. P. 113. doi: 10.1016/j.elecom.2013.05.032
- Guo D., Shibuya R., Akiba C., Saji S., Kondo T., Nakamura J. // Science. 2016. Vol. 351. N 6271. P. 361. doi: 10.1126/science.aad0832
- Neese F. // WIREs Comput. Mol. Sci. 2022. Vol. 12. P. e1606. doi: 10.1002/wcms.1606
- Abidin A.F.Z., Hamada I. // Surf. Sci. 2022. Vol. 724. P. 122144. doi: 10.1016/j.susc.2022.122144
- Hammer B., Hansen L.B., Nørskov J.K. // Phys. Rev. (B). 1999. Vol. 59. P. 7413. doi: 10.1103/PhysRevB.59.7413
- Nørskov J.K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J.R., Bligaard T., Jónsson H. // J. Phys. Chem. (B). 2004. Vol. 108. N 46. P. 17886. doi: 10.1021/jp047349j
Supplementary files
