Powder Adhesion Promoters Based on Hydrolysis Lignin for Rubbers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Powder adhesion promoters for rubbers based on hydrolysis lignin were obtained by its treatment with TiCl4 solution in C6H14. The physical-chemical properties of the obtained products were determined: bulk density, content of Ti(IV), carbonyl, carboxyl groups, acid-insoluble lignin. The obtained powder adhesion promoters were introduced into rubber compound in the amount of up to 5 phr (parts per 100 of rubber). Butadiene-α-methylstyrene rubber grade SBR-1705 HI-AR was used. The effect of the promoters on the kinetic parameters of vulcanization and physical-mechanical properties of rubbers was studied. It was revealed that the introduction of the studied powder promoters of adhesion into the rubber compound allows to increase the bond strength at the interface rubber–brass-plated metal cord by 2–3 times.

Full Text

Restricted Access

About the authors

L. A. Kuvshinova

Institute of Chemistry of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: fragl74@mail.ru
ORCID iD: 0000-0002-1964-6691
Russian Federation, Syktyvkar, 167000

E. V. Udoratina

Institute of Chemistry of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Email: fragl74@mail.ru
ORCID iD: 0000-0002-7146-2806
Russian Federation, Syktyvkar, 167000

Yu. S. Karaseva

Kazan National Research Technological University

Email: karaseva_j@mail.ru
ORCID iD: 0000-0001-6531-4252
Russian Federation, Kazan, 420015

E. N. Cherezova

Kazan National Research Technological University

Email: fragl74@mail.ru
ORCID iD: 0000-0002-6743-1097
Russian Federation, Kazan, 420015

A. A. Lobinsky

A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: fragl74@mail.ru
ORCID iD: 0000-0001-5930-2087
Russian Federation, St. Petersburg, 194021

References

  1. Евстигнеев Э.И. // Химия раст. сырья. 2024. № 1. С. 57. doi: 10.14258/jcprm.20240112046
  2. Цветков М.В., Салганский Е.А. // ЖПХ. 2018. Т. 91. № 7. С. 988; Tsvetkov M.V., Salganskiy E.A. // Russ. J. Appl. Chem. 2018. Vol. 91. N 7. P. 988. doi: 10.1134/S0044461818070095
  3. Крутов С.М., Возняковский А.П., Гордин А.А., Савкин Д.И., Шугалей И.В. // Экологическая химия. 2015. Т. 24. № 1. С. 29; Krutov S.М., Voznyakovskii А.P., Gordin А.А., Savkin D.I., Shugalei I.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 13. P. 2898. doi: 10.1134/S1070363215130058
  4. Kazzaz A.E., Fatehi P. // Industrial Crops and Products. 2020. Vol. 154. P. 112732. doi: 10.1016/j.indcrop.2020.112732
  5. Симонова В.В., Шендрика Т.Г., Кузнецов Б.Н. // J. Sib. Fed. Univ. Chem. 2010. Vol. 4. N 3. P. 340.
  6. Абдукаримова Д.Н., Негматова К.С., Эминов Ш.О. // Universum: технические науки. 2021. Т. 6. № 87. Art. ID 11965.
  7. Tanase-Opedal M., Espinosa E., Rodríguez A., Chinga-Carrasco G. // Materials. 2019. Vol. 12. P. 3006. doi: 10.3390/ma12183006
  8. Thakur V.K., Thakur M.K., Raghavan P., Kessler M.R. // ACS Sust. Chem. Eng. 2014. Vol. 2. N 5. P. 1072. doi: 10.1021/sc500087z
  9. Khalil H.P.S.A., Marliana M.M., Alshammari T. // BioResources. 2011. Vol. 6. N 3. P. 5206. doi: 10.15376/biores.6.4.5206-5223
  10. Xu G., Yan G., Zhang J. // Polym. Bull. 2015. Vol. 72. P. 2389. doi: 10.1007/s00289-015-1411-7
  11. Mahendran A.R., Wuzella G., Aust N., Müller U., Kandelbauer A. // Polym. Polym. Compos. 2013. Vol. 21. N 4. P. 199. doi: 10.1177/096739111302100401
  12. Graupner N. // J. Mater. Sci. 2008. Vol. 43. P. 5222. doi: 10.1007/s10853-008-2762-3
  13. Судакова И.Г., Гаврилова Ю.Ю., Фетисова О.Ю., Кузнецова Б.Н. // J. Sib. Fed. Univ. Chem. 2022. Vol. 15. N 4. P. 518. doi: 10.17516/1998-2836-0314
  14. Zhang S., Li M., Hao N., Ragauskas A.J. // ACS Omega. 2019. Vol. 4. N 23. P. 20197. doi: 10.1021/acsomega.9b02455
  15. Gosselink R.J.A., Abächerli A., Semke H., Malherbe R., Käuper P., Nadif A., Van Dam J.E.G. // Ind. Crop. Prod. 2004. Vol. 19. N 3. P. 271. doi: 10.1016/j.indcrop.2003.10.008
  16. Xiao S., Feng J., Zhu J., Wang, X., Yi C., Su S. // J. Appl. Polym. Sci. 2013. Vol. 130. N 2. P. 1308. doi: 10.1002/app.39311
  17. Falkehag S.I. // Appl. Polym. Symp. 1975. N 28. P. 247.
  18. Bertella S., Luterbacher J.S. // Trends in Chemistry. 2020. Vol. 2. N 5. P. 440. doi: 10.1016/j.trechm.2020.03.001
  19. Кувшинова Л.А., Удоратина Е.В., Карасева Ю.С., Черезова Е.Н. // ЖПХ. 2023. Т. 96. № 3. С. 252. doi: 10.31857/S0044461823030039; Kuvshinova L.A., Udoratina E.V., Karaseva Yu.S., Cherezova E.N. // Russ. J. Appl. Chem. 2023. Vol. 96. N 3. P. 281. doi: 10.1134/S1070427223030035
  20. Wang H., Pu Y., Ragauskas A., Yang B. // Bioresour. Technol. 2019. N 271. P. 449. doi: 10.1016/j.biortech.2018.09.0
  21. Trino L.D., Bronze-Uhle E.S., George A., Mathew M.T., Lisboa-Filho P.N. // Colloids Surf. (A). 2018. Vol. 546. P. 168. doi: 10.1016/j.colsurfa.2018.03.019
  22. Fu Y., Du H., Zhang S., Huang W. // Mater. Sci. Eng. (A). 2005. Vol. 403. P. 25. doi: 10.1016/j.msea.2005.04.036
  23. Петропавловский Г.А. Гидрофильные частично замещенные эфиры целлюлозы и их модификация путем химического сшивания. Л.: Наука, 1988. 298 с.
  24. Никифорова Т.Е., Багровская Н.А., Козлов В.А., Лилин С.А. // Химия раст. сырья. 2009. № 1. С. 5.
  25. Mulinari D.R., Voorwald H.J.C., Cioffi M.O.H., Rocha G.J., Pinto Da Silva M.L.C. // BioRes. 2010. Vol. 5. N 2. P. 661. doi: 10.15376/biores.5.2.661-671
  26. Araújo Martins G., Pereira P.H.F., Mulinari D.R. // BioRes. 2013. Vol. 8. N 4. P. 6373. doi: 10.15376/biores.8.4.6373-6382
  27. Marques P.A.A.P., Trindade T., Neto C.P. // Comp. Sci. Technol. 2006. Vol. 66. N 7–8. P. 1038. doi 10.1016/ j.compsitech.2005.07.029
  28. Abid U., Gill Y.Q., Irfan M.S., Umer R., Saeed F. // Int. J. Biol. Macromol. 2021. Vol. 181. P. 1. doi 10.1016/ j.ijbiomac.2021.03.0572029
  29. Гордин А.А., Пшеничникова Л.Н., Наговицына О.А. // Adv. Sci. 2017. Vol. 4. N 8.
  30. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. С. 161.
  31. Золотов Ю.А. Основы аналитической химии. М.: ВШ, 2001. С. 420.
  32. ГОСТ 19440–94. Порошки металлические. Определение насыпной плотности. Ч. 1.
  33. Кузнецова З.И. Методы исследования целлюлозы. Рига: Зинатне, 1981. С. 214.
  34. Segal L., Creely J.J., Martin Jr. A.E., Conrad C.M. // Text. Res. J. 1959. Vol. 29. P. 786. doi: 10.1177/0040551755902901003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of the original hydrolytic lignin HL0 in the visible field of 200 μm (a), particles of the HL0 sample presented in its entirety (b), a photograph of the HL0 sample (c), micrographs of the HL2 sample obtained by the action of TiCl4 in hexane on the hydrolytic lignin in the visible field of 200 μm (d) and HL2 particles on a similar scale presented in the micrograph (b) for HL0 (d), and a photograph of the HL2 sample (e).

Download (252KB)
3. Fig. 2. Effect of Ti(IV) content in samples HL0 (0 mg/g), HL1 (26.6 mg/g) and HL2 (61.4 mg/g) on the content of carbonyl and carboxyl groups, as well as the fraction of samples (ωp) soluble in a 10% aqueous solution of H2SO4, and the increase in the mass (∆m) of hydrolytic lignin HL0 after treatment in the TiCl4 system in hexane in relation to its initial weight.

Download (98KB)
4. Fig. 3. X-ray photoelectron survey spectrum of sample HL2 (a), fine structure of spectral lines Ti 2p (b), O 1s (c), C 1s (d).

Download (238KB)
5. Fig. 4. IR spectra (a) and diffraction patterns (b) of samples: initial hydrolytic lignin HL0 (1) and products of the action of TiCl4 in hexane on hydrolytic lignin HL1 (2) and HL2 (3).

Download (180KB)
6. Fig. 5. Rheometric parameters of rubber compounds: minimum torque Mmin of rubber compound (a) containing modifier HL0 (1), HL1 (2), HL2 (3), respectively; maximum torque Mmax of rubber compound (a) containing modifier HL0 (1ʹ), HL1 (2ʹ), HL2 (3ʹ), respectively; vulcanization optimum t90 of rubber compound (b) containing modifier HL0 (1), HL1 (2), HL2 (3), respectively.

Download (127KB)
7. Fig. 6. Physical and mechanical properties of vulcanizates before and after thermo-oxidative aging, containing different amounts of modifiers HL0 (1), HL1 (2), HL2 (3): conventional tensile strength fP (a), relative elongation at break ɛP (b), rebound elasticity R (c), Shore A hardness (d), bond strength of rubber–brass-plated metal cord (d).

Download (548KB)
8. Fig. 7. Proposed scheme for increasing the adhesive strength of vulcanizates: control comparison sample without modifier (a), vulcanizates with the addition of modifiers HL1 and HL2 (b). 1 – carbon steel wire – metal cord, 2 – brass, 3 – copper and zinc oxide film. n = 1–7, R – lignin or cellulose macromolecule.

Download (208KB)
9. Fig. 8. SEM and EDA analysis of the side section of rubber without modifier (a, b) and with HL2 modifier in the amount of 5 parts by weight per 100 parts by weight of rubber (c, d), respectively.

Download (294KB)

Copyright (c) 2024 Russian Academy of Sciences