A New Method for the Synthesis of Layered Europium Hydroxide Using Propylene Oxide as the Precipitating Agent
- 作者: Sheichenko E.D.1,2, Yapryntsev A.D.1, Rodina A.A.1, Baranchikov A.E.1, Ivanov V.K.1,3
- 
							隶属关系: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research University Higher School of Economics
- Moscow State University
 
- 期: 卷 68, 编号 1 (2023)
- 页面: 47-55
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjpbr.com/0044-457X/article/view/665322
- DOI: https://doi.org/10.31857/S0044457X22601626
- EDN: https://elibrary.ru/GWMDSJ
- ID: 665322
如何引用文章
详细
A new method for the synthesis of layered europium basic chloride in up to 90% yield was developed. The method is based on hydrolysis of europium chloride in the presence of propylene oxide. The effect of reaction temperature on the yield and composition of the products of europium chloride hydrolysis in the presence of propylene oxide was analyzed. The obtained layered europium basic chloride had pronounced anion exchange properties. The possibility of intercalation of the isonicotinate anion into a layered rare earth hydroxide was demonstrated for the first time. The intercalation of the benzoate or isonicotinate anions into layered europium hydroxide led to luminescence sensitization and decrease in the Eu3+ local symmetry.
作者简介
E. Sheichenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
A. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Rodina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University
							编辑信件的主要联系方式.
							Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
参考
- Gándara F., Perles J., Snejko N. et al. // Angew. Chem. – Int. Ed. 2006. V. 45. № 47. P. 7998. https://doi.org/10.1002/anie.200602502
- Liang J., Ma R., Sasaki T. // Photofunctional Layered Materials. 2015. https://doi.org/10.1007/978-3-319-16991-0_2
- Wu L., Gao C., Li Z. et al. // J. Mater. Chem. C. 2017. V. 5. № 21. P. 5207. https://doi.org/10.1039/c7tc01246b
- Wu L., Chen G., Li Z. // Small. 2017. V. 13. № 23. P. 1. https://doi.org/10.1002/smll.201604070
- Liu L., Yu M., Zhang J. et al. // J. Mater. Chem. C. 2015. V. 3. № 10. P. 2326. https://doi.org/10.1039/c4tc02760d
- Shen T., Zhang Y., Liu W. et al. // J. Mater. Chem. C. 2015. V. 3. № 8. P. 1807. https://doi.org/10.1039/c4tc02583k
- Lee B. Il, Jeong H., Byeon S.H. // Chem. Commun. 2013. V. 49. № 97. P. 11397. https://doi.org/10.1039/c3cc46609d
- Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 415. https://doi.org/10.1134/S0036023622040180
- Xiang Y., Yu X.F., He D.F. et al. // Adv. Funct. Mater. 2011. V. 21. № 22. P. 4388. https://doi.org/10.1002/adfm.201101808
- Lee B. Il, Lee K.S., Lee J.H. et al. // Dalton Trans. 2009. № 14. P. 2490. https://doi.org/10.1039/b823172a
- Yoon Y.S., Lee B.L., Lee K.S. et al. // Adv. Funct. Mater. 2009. V. 19. № 21. P. 3375. https://doi.org/10.1002/adfm.200901051
- Yoon Y.S., Lee B. Il, Lee K.S. et al. // Chem. Commun. 2010. V. 46. № 21. P. 3654. https://doi.org/10.1039/b927570c
- Geng F., Xin H., Matsushita Y. et al. // Chem. – A Eur. J. 2008. V. 14. № 30. P. 9255. https://doi.org/10.1002/chem.200800127
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
- Xu Y., Goyanes A., Wang Y. et al. // Dalton Trans. 2018. V. 47. № 9. P. 3166. https://doi.org/10.1039/c7dt03729e
- Frolova E.A., Kondakov D.F., Yapryntsev A.D. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. P. 259. https://doi.org/10.1134/S0036023615030043
- Hindocha S.A., McIntyre L.J., Fogg A.M. // J. Solid State Chem. 2009. V. 182. № 5. P. 1070. https://doi.org/10.1016/j.jssc.2009.01.039
- Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
- Liang J., Ma R., Sasaki T. // Dalton Trans. 2014. V. 43. № 27. P. 10355. https://doi.org/10.1039/c4dt00425f
- Dolgopolova E.A., Ivanova O.S., Sharikov F.Y. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 10. P. 1303. https://doi.org/10.1134/S003602361210004X
- Yapryntsev A.D., Baranchikov A.E., Zabolotskaya A.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 12. P. 1383. https://doi.org/10.1134/S0036023614120286
- Rodina A.A., Yapryntsev A.D., Churakov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 125. https://doi.org/10.1134/S0036023621020169
- Yapryntsev A.D., Skogareva L.S., Gol’dt A.E. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1027. https://doi.org/10.1134/S0036023615090211
- Geng F., Matsushita Y., Ma R. et al. // Inorg. Chem. 2009. V. 48. № 14. P. 6724. https://doi.org/10.1021/ic900669p
- Rao M.M., Reddy B.R., Jayalakshmi M. et al. // Mater. Res. Bull. 2005. V. 40. № 2. P. 347. https://doi.org/10.1016/j.materresbull.2004.10.007
- Bann B., Miller S.A. // Chem. Rev. 1958. V. 58. № 1. P. 131. https://doi.org/10.1021/cr50019a004
- Sharipov K.B., Yapryntsev A.D., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 2. P. 139. https://doi.org/10.1134/S0036023617020164
- Cui H., Zayat M., Levy D. // J. Sol-Gel Sci. Technol. 2005. V. 35. № 3. P. 175. https://doi.org/10.1007/s10971-005-4165-0
- Gash A.E., Tillotson T.M., Satcher J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093(01)00427-6
- Gash A.E., Satcher J.H., Simpson R.L. // Chem. Mater. 2003. V. 15. № 17. P. 3268. https://doi.org/10.1021/cm034211p
- Wei T.Y., Chen C.H., Chang K.H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
- Cheng W., Rechberger F., Niederberger M. // ACS Nano. 2016. V. 10. № 2. P. 2467. https://doi.org/10.1021/acsnano.5b07301
- Eid J., Pierre A.C., Baret G. // J. Non. Cryst. Solids. 2005. V. 351. № 3. P. 218. https://doi.org/10.1016/j.jnoncrysol.2004.11.020
- Clapsaddle B.J., Neumann B., Wittstock A. et al. // J. Sol-Gel Sci. Technol. 2012. V. 64. № 2. P. 381. https://doi.org/10.1007/s10971-012-2868-6
- Leventis N., Vassilaras P., Fabrizio E.F. et al. // J. Mater. Chem. 2007. V. 17. № 15. P. 1502. https://doi.org/10.1039/b612625a
- Oestreicher V., Jobbágy M. // Langmuir. 2013. V. 29. № 39. P. 12104. https://doi.org/10.1021/la402260m
- Oestreicher V., Fábregas I., Jobbágy M. // J. Phys. Chem. C. 2014. V. 118. № 51. P. 30274. https://doi.org/10.1021/jp510341q
- Oestreicher V., Jobbágy M. // Chem. – A Eur. J. 2019. V. 25. № 54. P. 12611. https://doi.org/10.1002/chem.201902627
- Du A., Zhou B., Zhang Z. et al. // Materials (Basel). 2013. V. 6. № 3. P. 941. https://doi.org/10.3390/ma6030941
- Fritz J.S., Oliver R.T., Pietrzyk D.J. // Anal. Chem. 1958. V. 30. № 6. P. 1111. https://doi.org/10.1021/ac60138a032
- Long F.A., Pritchard J.G. // J. Am. Chem. Soc. 1956. V. 78. № 12. P. 2663. https://doi.org/10.1021/ja01593a001
- Sakuma K., Fujihara S. // J. Ceram. Process. Res. 2013. V. 14. P. 26. https://www.applc.keio.ac.jp/~shinobu/150.pdf
- Yapryntsev A., Abdusatorov B., Yakushev I. et al. // Dalton Trans. 2019. V. 48. № 18. P. 6111. https://doi.org/10.1039/c9dt00390h
- Chernyshova A.V., Nikolaev A.A., Kolokolov F.A. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1063. https://doi.org/10.1134/S1070363221060128
- Poudret L., Prior T.J., McIntyre L.J. et al. // Chem. Mater. 2008. V. 20. № 24. P. 7447. https://doi.org/10.1021/cm802301a
- Kirchhoefer R.D. // J. AOAC Int. 1994. V. 77. № 3. P. 587. https://doi.org/10.1093/jaoac/77.3.587
- Su F., Liu C., Yang Y. et al. // Mater. Res. Bull. 2017. V. 88. P. 301. https://doi.org/10.1016/j.materresbull.2017.01.008
- Sun Y., Chu N., Gu Q. et al. // Eur. J. Inorg. Chem. 2013. № 1. P. 32. https://doi.org/10.1002/ejic.201201048
- Utochnikova V.V., Kuzmina N.P. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 679. https://doi.org/10.1134/S1070328416090074
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					








