A New Method for the Synthesis of Layered Europium Hydroxide Using Propylene Oxide as the Precipitating Agent
- Авторлар: Sheichenko E.D.1,2, Yapryntsev A.D.1, Rodina A.A.1, Baranchikov A.E.1, Ivanov V.K.1,3
- 
							Мекемелер: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research University Higher School of Economics
- Moscow State University
 
- Шығарылым: Том 68, № 1 (2023)
- Беттер: 47-55
- Бөлім: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjpbr.com/0044-457X/article/view/665322
- DOI: https://doi.org/10.31857/S0044457X22601626
- EDN: https://elibrary.ru/GWMDSJ
- ID: 665322
Дәйексөз келтіру
Аннотация
A new method for the synthesis of layered europium basic chloride in up to 90% yield was developed. The method is based on hydrolysis of europium chloride in the presence of propylene oxide. The effect of reaction temperature on the yield and composition of the products of europium chloride hydrolysis in the presence of propylene oxide was analyzed. The obtained layered europium basic chloride had pronounced anion exchange properties. The possibility of intercalation of the isonicotinate anion into a layered rare earth hydroxide was demonstrated for the first time. The intercalation of the benzoate or isonicotinate anions into layered europium hydroxide led to luminescence sensitization and decrease in the Eu3+ local symmetry.
Негізгі сөздер
Авторлар туралы
E. Sheichenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
A. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Rodina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University
							Хат алмасуға жауапты Автор.
							Email: a.baranchikov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
Әдебиет тізімі
- Gándara F., Perles J., Snejko N. et al. // Angew. Chem. – Int. Ed. 2006. V. 45. № 47. P. 7998. https://doi.org/10.1002/anie.200602502
- Liang J., Ma R., Sasaki T. // Photofunctional Layered Materials. 2015. https://doi.org/10.1007/978-3-319-16991-0_2
- Wu L., Gao C., Li Z. et al. // J. Mater. Chem. C. 2017. V. 5. № 21. P. 5207. https://doi.org/10.1039/c7tc01246b
- Wu L., Chen G., Li Z. // Small. 2017. V. 13. № 23. P. 1. https://doi.org/10.1002/smll.201604070
- Liu L., Yu M., Zhang J. et al. // J. Mater. Chem. C. 2015. V. 3. № 10. P. 2326. https://doi.org/10.1039/c4tc02760d
- Shen T., Zhang Y., Liu W. et al. // J. Mater. Chem. C. 2015. V. 3. № 8. P. 1807. https://doi.org/10.1039/c4tc02583k
- Lee B. Il, Jeong H., Byeon S.H. // Chem. Commun. 2013. V. 49. № 97. P. 11397. https://doi.org/10.1039/c3cc46609d
- Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 415. https://doi.org/10.1134/S0036023622040180
- Xiang Y., Yu X.F., He D.F. et al. // Adv. Funct. Mater. 2011. V. 21. № 22. P. 4388. https://doi.org/10.1002/adfm.201101808
- Lee B. Il, Lee K.S., Lee J.H. et al. // Dalton Trans. 2009. № 14. P. 2490. https://doi.org/10.1039/b823172a
- Yoon Y.S., Lee B.L., Lee K.S. et al. // Adv. Funct. Mater. 2009. V. 19. № 21. P. 3375. https://doi.org/10.1002/adfm.200901051
- Yoon Y.S., Lee B. Il, Lee K.S. et al. // Chem. Commun. 2010. V. 46. № 21. P. 3654. https://doi.org/10.1039/b927570c
- Geng F., Xin H., Matsushita Y. et al. // Chem. – A Eur. J. 2008. V. 14. № 30. P. 9255. https://doi.org/10.1002/chem.200800127
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
- Xu Y., Goyanes A., Wang Y. et al. // Dalton Trans. 2018. V. 47. № 9. P. 3166. https://doi.org/10.1039/c7dt03729e
- Frolova E.A., Kondakov D.F., Yapryntsev A.D. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. P. 259. https://doi.org/10.1134/S0036023615030043
- Hindocha S.A., McIntyre L.J., Fogg A.M. // J. Solid State Chem. 2009. V. 182. № 5. P. 1070. https://doi.org/10.1016/j.jssc.2009.01.039
- Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
- Liang J., Ma R., Sasaki T. // Dalton Trans. 2014. V. 43. № 27. P. 10355. https://doi.org/10.1039/c4dt00425f
- Dolgopolova E.A., Ivanova O.S., Sharikov F.Y. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 10. P. 1303. https://doi.org/10.1134/S003602361210004X
- Yapryntsev A.D., Baranchikov A.E., Zabolotskaya A.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 12. P. 1383. https://doi.org/10.1134/S0036023614120286
- Rodina A.A., Yapryntsev A.D., Churakov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 125. https://doi.org/10.1134/S0036023621020169
- Yapryntsev A.D., Skogareva L.S., Gol’dt A.E. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1027. https://doi.org/10.1134/S0036023615090211
- Geng F., Matsushita Y., Ma R. et al. // Inorg. Chem. 2009. V. 48. № 14. P. 6724. https://doi.org/10.1021/ic900669p
- Rao M.M., Reddy B.R., Jayalakshmi M. et al. // Mater. Res. Bull. 2005. V. 40. № 2. P. 347. https://doi.org/10.1016/j.materresbull.2004.10.007
- Bann B., Miller S.A. // Chem. Rev. 1958. V. 58. № 1. P. 131. https://doi.org/10.1021/cr50019a004
- Sharipov K.B., Yapryntsev A.D., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 2. P. 139. https://doi.org/10.1134/S0036023617020164
- Cui H., Zayat M., Levy D. // J. Sol-Gel Sci. Technol. 2005. V. 35. № 3. P. 175. https://doi.org/10.1007/s10971-005-4165-0
- Gash A.E., Tillotson T.M., Satcher J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093(01)00427-6
- Gash A.E., Satcher J.H., Simpson R.L. // Chem. Mater. 2003. V. 15. № 17. P. 3268. https://doi.org/10.1021/cm034211p
- Wei T.Y., Chen C.H., Chang K.H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
- Cheng W., Rechberger F., Niederberger M. // ACS Nano. 2016. V. 10. № 2. P. 2467. https://doi.org/10.1021/acsnano.5b07301
- Eid J., Pierre A.C., Baret G. // J. Non. Cryst. Solids. 2005. V. 351. № 3. P. 218. https://doi.org/10.1016/j.jnoncrysol.2004.11.020
- Clapsaddle B.J., Neumann B., Wittstock A. et al. // J. Sol-Gel Sci. Technol. 2012. V. 64. № 2. P. 381. https://doi.org/10.1007/s10971-012-2868-6
- Leventis N., Vassilaras P., Fabrizio E.F. et al. // J. Mater. Chem. 2007. V. 17. № 15. P. 1502. https://doi.org/10.1039/b612625a
- Oestreicher V., Jobbágy M. // Langmuir. 2013. V. 29. № 39. P. 12104. https://doi.org/10.1021/la402260m
- Oestreicher V., Fábregas I., Jobbágy M. // J. Phys. Chem. C. 2014. V. 118. № 51. P. 30274. https://doi.org/10.1021/jp510341q
- Oestreicher V., Jobbágy M. // Chem. – A Eur. J. 2019. V. 25. № 54. P. 12611. https://doi.org/10.1002/chem.201902627
- Du A., Zhou B., Zhang Z. et al. // Materials (Basel). 2013. V. 6. № 3. P. 941. https://doi.org/10.3390/ma6030941
- Fritz J.S., Oliver R.T., Pietrzyk D.J. // Anal. Chem. 1958. V. 30. № 6. P. 1111. https://doi.org/10.1021/ac60138a032
- Long F.A., Pritchard J.G. // J. Am. Chem. Soc. 1956. V. 78. № 12. P. 2663. https://doi.org/10.1021/ja01593a001
- Sakuma K., Fujihara S. // J. Ceram. Process. Res. 2013. V. 14. P. 26. https://www.applc.keio.ac.jp/~shinobu/150.pdf
- Yapryntsev A., Abdusatorov B., Yakushev I. et al. // Dalton Trans. 2019. V. 48. № 18. P. 6111. https://doi.org/10.1039/c9dt00390h
- Chernyshova A.V., Nikolaev A.A., Kolokolov F.A. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1063. https://doi.org/10.1134/S1070363221060128
- Poudret L., Prior T.J., McIntyre L.J. et al. // Chem. Mater. 2008. V. 20. № 24. P. 7447. https://doi.org/10.1021/cm802301a
- Kirchhoefer R.D. // J. AOAC Int. 1994. V. 77. № 3. P. 587. https://doi.org/10.1093/jaoac/77.3.587
- Su F., Liu C., Yang Y. et al. // Mater. Res. Bull. 2017. V. 88. P. 301. https://doi.org/10.1016/j.materresbull.2017.01.008
- Sun Y., Chu N., Gu Q. et al. // Eur. J. Inorg. Chem. 2013. № 1. P. 32. https://doi.org/10.1002/ejic.201201048
- Utochnikova V.V., Kuzmina N.P. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 679. https://doi.org/10.1134/S1070328416090074
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					








