Synthesis of granulated hydrophobic magnetic sorbents and composite sponges based on Fe3O4/Zn-Al-LDH for oil pollution removal

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In this study, we present a novel surface modification approach for magnetic composite materials based on Fe3O4/Zn-Al layered double hydroxides (LDH) to enhance their hydrophobic properties. We have systematically investigated the interaction mechanisms between various surfactants (stearate, oleate, and sodium dodecyl sulfate) and the Fe3O4/Zn-Al-LDH surface. Our research examined how ethanol-mediated hydrophobization affects the material's porous and crystalline structure. We developed innovative synthesis routes for both granulated and sponge-like magnetic sorbents utilizing melamine-formaldehyde resin as a binding matrix. Under optimized conditions, the resulting Fe3O4-LDH-ST granulated sorbents and MEL-Fe3O4/LDH-ST sponge-like materials demonstrated exceptional oil sorption capacities of 0.60 and 21.36 g/g, respectively, combined with significant magnetic susceptibility, enhanced hydrophobicity, and excellent regeneration potential. These engineered materials show promise for marine oil spill remediation and environmental monitoring applications.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Ivanov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

O. Shichalin

Sakhalin State University

Хат алмасуға жауапты Автор.
Email: ivanov.np@dvfu.ru
Ресей, Yuzhno-Sakhalinsk

V. Rastorguev

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

V. Zakharenko

Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

A. Myagchilov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

P. Marmaza

Sakhalin State University

Email: ivanov.np@dvfu.ru
Ресей, Yuzhno-Sakhalinsk

Ya. Zernov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

S. Pisarev

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

I. Buravlev

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

E. Papynov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
Ресей, Vladivostok

Әдебиет тізімі

  1. Huang L., Liow J., Lim K. et al. // Adv. Sustain. Syst. 2024. V. 8. № 8. https://doi.org/10.1002/adsu.202300659
  2. Riyal I., Sharma H., Dwivedi C. // Groundw. Sustain. Dev. 2024. V. 26. P. 101274. https://doi.org/10.1016/j.gsd.2024.101274
  3. Paul J., Qamar A., Ahankari S.S. et al. // Carbohydr. Polym. 2024. V. 338. P. 122198. https://doi.org/10.1016/j.carbpol.2024.122198
  4. Vialkova E., Korshikova E., Fugaeva A. // Water. 2024. V. 16. № 18. P. 2626. https://doi.org/10.3390/w16182626
  5. Li A., Huber T., Barker D. et al. // Carbohydr. Polym. 2024. V. 343. P. 122432. https://doi.org/10.1016/j.carbpol.2024.122432
  6. Chakraborty S., Tripathi A. // J. Water Process Eng. 2024. V. 67. P. 106242. https://doi.org/10.1016/j.jwpe.2024.106242
  7. Liu Z., Gao B., Zhao P. et al. // Sep. Purif. Technol. 2024. V. 337. P. 126347. https://doi.org/10.1016/j.seppur.2024.126347
  8. Papynov E.K., Dran’kov A.N., Tkachenko I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 820. https://doi.org/10.1134/S0036023620060157
  9. Tkachenko I.A., Panasenko A.E., Odinokov M.M. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1142. https://doi.org/10.1134/S0036023620080173
  10. Shapkin N.P., Panasenko A.E., Khal’chenko I.G. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1614. https://doi.org/10.1134/S0036023620100186
  11. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 7. P. 879. https://doi.org/10.1134/S0036023617070129
  12. Seliverstov E.S., Pisarenko A.S., Yapryntsev M.N. et al. // Ceram. Int. 2024. № September. P. 10. https://doi.org/10.1016/j.ceramint.2024.11.024
  13. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1010. https://doi.org/10.1134/S0036023619080060
  14. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1291. https://doi.org/10.1134/S0036023624601715
  15. Ivanov N.P., Drankov A.N., Papynov E.K. et al. // Prot. Met. Phys. Chem. Surfaces. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  16. Bian K., Guo H., Lai Z. et al. // Sep. Purif. Technol. 2025. V. 358. № PB. P. 130263. https://doi.org/10.1016/j.seppur.2024.130263
  17. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 622. https://doi.org/10.1134/S0036023622050175
  18. Fadeev V.V., Tronov A.P., Tolchev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 5. P. 538. https://doi.org/10.1134/S0036023623600478
  19. Duan J., Jia P., Liu Z. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1646. https://doi.org/10.1134/S0036023624601624
  20. Gowda A.H.D., Mendke T., Srilakshmi C. // J. Porous Mater. 2024. V. 31. № 3. P. 959. https://doi.org/10.1007/s10934-024-01576-x
  21. Sobhana S.S.L., Zhang X., Kesavan L. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2017. V. 522. P. 416. https://doi.org/10.1016/j.colsurfa.2017.03.025
  22. Dutta K., Pramanik A. // Chem. Commun. 2013. V. 49. № 57. P. 6427. https://doi.org/10.1039/c3cc42260g
  23. Qiao W., Bai H., Tang T. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2019. V. 577. P. 118. https://doi.org/10.1016/j.colsurfa.2019.05.046
  24. Santosa S.J., Krisbiantoro P.A., Minh Ha T.T. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2021. V. 614. P. 126159. https://doi.org/10.1016/j.colsurfa.2021.126159
  25. Chengqian F., Wanbing L., Yimin D. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2023. P. 130921. https://doi.org/10.1016/j.colsurfa.2023.130921
  26. Balybina V.A., Dran’kov A.N., Shichalin O.O. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 458. https://doi.org/10.3390/jcs7110458
  27. Ivanov N.P., Dran A.N., Shichalin O.O. et al. // Prot. Met. Phys. Chem. Surf. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  28. Rajabi M., Abolhosseini M., Hosseini-Bandegharaei A. et al. // Microchem. J. 2020. V. 159. P. 105450. https://doi.org/10.1016/j.microc.2020.105450
  29. Biata N.R., Jakavula S., Mashile G.P. et al. // Hydrometallurgy. 2020. V. 197. P. 105447. https://doi.org/10.1016/j.hydromet.2020.105447
  30. Jung I.K., Jo Y., Han S.C. et al. // Sci. Total Environ. 2020. V. 705. P. 135814. https://doi.org/10.1016/j.scitotenv.2019.135814
  31. Gao Y., Xing H., Zhang Y. // Sep. Purif. Technol. 2025. V. 354. № July 2024. P. 128721. https://doi.org/10.1016/j.seppur.2024.128721
  32. Khumsap S., Parapichai N., Lertsarawut P. et al. // Radiat. Phys. Chem. 2025. V. 226. № May 2024. P. 112287. https://doi.org/10.1016/j.radphyschem.2024.112287
  33. Ghasemi F., Jamshidi M., Ghamarpoor R. // Water Resour. Ind. 2024. V. 32. P. 100268. https://doi.org/10.1016/j.wri.2024.100268
  34. Tomon T.R.B., Omisol C.J.M., Aguinid B.J.M. et al. // Sci. Rep. 2024. V. 14. № 1. P. 1. https://doi.org/10.1038/s41598-024-64178-2
  35. Akanji I.O., Iwarere S.A., Sani B.S. et al. // Chem. Eng. Sci. 2024. V. 298. № November 2023. P. 120383. https://doi.org/10.1016/j.ces.2024.120383
  36. Tomkowiak K., Mazela B., Szubert Z. et al. // Molecules. 2024. V. 29. № 19. P. 4661. https://doi.org/10.3390/molecules29194661
  37. Saleem S., Khalid S., Nazir A. et al. // RSC Adv. 2024. V. 14. № 35. P. 25393. https://doi.org/10.1039/d4ra03924f
  38. Farahat M., Sobhy A., Sanad M.M.S. // Sci. Rep. 2022. V. 12. № 1. P. 1. https://doi.org/10.1038/s41598-022-15187-6

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction patterns of the original and modified granulated sorption materials based on Fe3O4/Zn-Al-LDH.

Жүктеу (185KB)
3. Fig. 2. Differential curves of pore size distribution in the original and modified granular sorption materials based on Fe3O4/Zn-Al-LDH.

Жүктеу (169KB)
4. Fig. 3. SEM images and EDS maps of the elemental distribution over the surface of the original and modified granular sorption materials: a – Fe3O4/SDG, b – Fe3O4/SDG-OL-0.01, Fe3O4/SDG-ST-0.01, Fe3O4/SDG-DOD-0.01.

Жүктеу (1MB)
5. Fig. 4. Sorption capacity in relation to oil, motor oil and water for the original and modified granulated sorption materials based on Fe3O4/Zn-Al-LDH.

Жүктеу (202KB)
6. Fig. 5. Water contact angles for spongy hydrophobic magnetic composites: a – MEL-Fe3O4/SDG-OL-0.01, b – MEL-Fe3O4/SDG-OL-0.05.

Жүктеу (98KB)
7. Fig. 6. Sorption capacity in relation to oil, motor oil and water for the original and modified spongy sorption materials MEL-Fe3O4/SDG.

Жүктеу (126KB)
8. Fig. 7. Sorption indices in relation to oil in multiple adsorption–desorption cycles for modified granular sorption materials MEL-Fe3O4/SDG-OL-0.01 and -0.05.

Жүктеу (138KB)
9. Fig. 8. Sorption indices in relation to oil in multiple adsorption–desorption cycles for modified spongy sorption materials MEL-Fe3O4/SDG-OL-0.01: a – sorption capacity, b – water contact angle after five cycles.

Жүктеу (137KB)
10. Fig. 9. Proposed mechanism of surface hydrophobization of LDH using the example of interaction with sodium stearate.

Жүктеу (164KB)

© Russian Academy of Sciences, 2025