Построение силового поля для компьютерного моделирования многостенных нанотрубок с использованием генетического алгоритма. I. Дисульфид вольфрама
- Авторы: Бандура А.В.1, Лукьянов С.И.1, Домнин А.В.1, Куруч Д.Д.1, Эварестов Р.А.1
- 
							Учреждения: 
							- Санкт-Петербургский государственный университет, Институт химии
 
- Выпуск: Том 68, № 11 (2023)
- Страницы: 1588-1598
- Раздел: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://rjpbr.com/0044-457X/article/view/666143
- DOI: https://doi.org/10.31857/S0044457X23601086
- EDN: https://elibrary.ru/EPKYAO
- ID: 666143
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Предложена методика построения силовых полей, основанная на использовании генетических алгоритмов, которая направлена на параметризацию потенциалов, предназначенных для компьютерного моделирования многоатомных наносистем. Для иллюстрации предлагаемого подхода разработано силовое поле для моделирования слоистых модификаций WS2, включая многостенные нанотрубки, размеры которых выходят за рамки возможностей достаточно точных квантово-химических методов. При определении параметров потенциала в качестве калибровочных систем использованы слоистые политипы объемных кристаллов, монослои, бислои, а также нанотрубки небольших диаметров. Найденная параметризация успешно протестирована на двустенных нанотрубках, структура которых была определена с помощью квантово-химических расчетов. Полученное силовое поле впервые использовано для определения структуры и устойчивости ахиральных многостенных нанотрубок на основе WS2. Межстенные расстояния, полученные в процессе моделирования, хорошо согласуются с результатами недавних измерений этих параметров для реально существующих нанотрубок.
Об авторах
А. В. Бандура
Санкт-Петербургский государственный университет,Институт химии
														Email: a.bandura@spbu.ru
				                					                																			                												                								Россия, 199034, Санкт-Петербург, Университетская наб., 7/9						
С. И. Лукьянов
Санкт-Петербургский государственный университет,Институт химии
														Email: a.bandura@spbu.ru
				                					                																			                												                								Россия, 199034, Санкт-Петербург, Университетская наб., 7/9						
А. В. Домнин
Санкт-Петербургский государственный университет,Институт химии
														Email: a.bandura@spbu.ru
				                					                																			                												                								Россия, 199034, Санкт-Петербург, Университетская наб., 7/9						
Д. Д. Куруч
Санкт-Петербургский государственный университет,Институт химии
														Email: a.bandura@spbu.ru
				                					                																			                												                								Россия, 199034, Санкт-Петербург, Университетская наб., 7/9						
Р. А. Эварестов
Санкт-Петербургский государственный университет,Институт химии
							Автор, ответственный за переписку.
							Email: a.bandura@spbu.ru
				                					                																			                												                								Россия, 199034, Санкт-Петербург, Университетская наб., 7/9						
Список литературы
- Musfeldt J.L., Iwasa Y., Tenne R. // Physics Today. 2020. V. 73. № 8. P. 42. https://doi.org/10.1063/PT.3.4547
- Kawai H., Sugahara M., Okada R. et al. // Appl. Phys. Express. 2017. V. 10. № 5. P. 015001. https://doi.org/10.7567/APEX.10.015001
- Kim B., Park N., Kim J. // Nat. Commun. 2022. V. 13. P. 3237. https://doi.org/10.1038/s41467-022-31018-8
- O’Neal K.R., Cherian J.G., Zak A. et al. // Nano Lett. 2016. V. 16. P. 993. https://doi.org/10.1021/acs.nanolett.5b03996
- Sinha S.S., Zak A., Rosentsvieg R. et al. // Small. 2020. V. 16. № 4. P. 1904390. https://doi.org/10.1002/smll.201904390
- Nagapriya K.S., Goldbart O., Kaplan-Ashiri I. et al. // Phys. Rev. Lett. 2008. V. 101. P. 195501. https://doi.org/10.1103/PhysRevLett.101.195501
- Levi R., Bitton O., Leitus G. et al. // Nano Lett. 2013. V. 13. P. 3736. https://doi.org/10.1021/nl401675k
- Sugahara M., Kawai H., Yomogida Y. et al. // Appl. Phys. Express. 2016. V. 9. P. 075001. https://doi.org/10.7567/APEX.9.075001
- Qin F., Shi W., Ideue T. et al. // Nat. Commun. 2017. V. 8. P. 14465. https://doi.org/10.1038/ncomms14465
- Zhang C.Y., Wang S., Yang L.J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 243101. https://doi.org/10.1063/1.4729144
- Zhang Y.J., Onga M., Qin F. et al. // 2D Mater. 2018. V. 5. P. 035002. https://doi.org/10.1088/2053-1583/aab670
- Divon Y., Levi R., Garel J. et al. // Nano Lett. 2017. V. 17. № 1. P. 28. https://doi.org/10.1021/acs.nanolett.6b03012
- Maharaj D., Bhushan B. // Tribol Lett. 2013. V. 49. № 2. P. 323. https://doi.org/10.1007/s11249-012-0071-0
- Reddy C.S., Zak A., Zussman E. // J. Mater. Chem. 2011. V. 21. P. 16086. https://doi. org/https://doi.org/10.1039/C1JM12700D
- Zohar E., Baruch S., Shneider M.H. et al. // J. Adhes. Sci. Technol. 2011. V. 25. P. 1603. https://doi.org/10.1163/ 016942410X524138
- Otorgust G., Dodiuk H., Kenig S., Tenne R. // Eur. Polym. J. 2017. V. 89. P. 281. https://doi.org/10.1016/j.eurpolymj.2017.02.027
- Yadgarov L., Višić B., Abir T. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 20812. https://doi.org/10.1039/c8cp02245c
- Rahman Md.A., Yomogida Y., Nagano M. et al. // Jpn. J. Appl. Phys. 2021. V. 60. P. 100902. https://doi.org/10.35848/1347-4065/ac2013
- Shen G., Yan Y., Hong K. // Mater. Lett. 2022. V. 319. P. 132303. https://doi.org/10.1016/j.matlet.2022.132303
- Sinha S.S., Yadgarov L., Aliev S.B. et al. // J. Phys. Chem. C. 2021. V. 125. P. 6324. https://doi.org/10.1021/acs.jpcc.0c10784
- Yomogida Y., Miyata Y., Yanagi K. // Appl. Phys. Express. 2019. V. 12. P. 085001. https://doi.org/10.7567/1882-0786/ab2acb
- Bar Sadan M., Houben L., Enyashin A.N. et al. // PNAS. 2008. V. 105. № 41. P. 15643. https://doi.org/10.1073_pnas.0805407105
- Deniz H., Qin L.-C. // Chem. Phys. Lett. 2012. V. 552. P. 92. https://doi.org/10.1016/j.cplett.2012.09.041
- Chen Y., Deniz H., Qin L.-C. // Nanoscale. 2017. V. 9. P. 7124. https://doi.org/10.1039/c7nr01688c
- Krause M., Mücklich A., Zak A. et al. // Phys. Status Solidi B. 2011. V. 248. № 11. P. 2716. https://doi.org/10.1002/pssb.201100076
- Seifert G., Terrones H., Terrones M. et al. // Solid State Commun. 2000. V. 114. № 5. P. 245. https://doi.org/10.1016/S0038-1098(00)00047-8
- Ghorbani-Asl M., Zibouche N., Wahiduzzaman M. et al. // Sci. Rep. 2013. V. 3. P. 2961. https://doi.org/10.1038/srep02961
- Бандура А.В., Куруч Д.Д., Лукьянов С.И., Эварес-тов Р.А. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1795. https://doi.org/10.31857/S0044457X2260116X
- Evarestov R.A., Bandura A.V., Porsev V.V., Kovalenko A.V. // J. Comput. Chem. 2017. V. 38. P. 2581. https://doi.org/10.1002/jcc.24916
- Evarestov R.A., Kovalenko A.V., Bandura A.V. et al. // Mater. Res. Express. 2018. V. 5. P. 115028. https://doi.org/10.1088/2053-1591/aadf00
- Bandura A.V., Lukyanov S.I., Kuruch D.D., Evarestov R.A. // Physica E. 2020. V. 124. P. 114183. https://doi.org/10.1016/j.physe.2020.114183
- Piskunov S., Lisovski O., Zhukovskii Y.F. et al. // ACS Omega. 2019. V. 4. P. 1434. https://doi.org/10.1021/acsomega.8b03121
- Talla J.A., Al-Khaza’leh Kh., Omar N. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1025. https://doi.org/10.1134/S0036023622070178
- Lukyanov S.I., Bandura A.V., Evarestov R.A. et al. // Physica E. 2021. V. 133. P. 114779. https://doi.org/10.1016/j.physe.2021.114779
- Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018. V. 8. № 4. P. e1360. https://doi.org/10.1002/wcms.1360
- Dovesi R., Saunders V.R., Roetti C. et al. // CRYSTAL17 User’s Manual. University of Turin. Torino, 2018.
- Pacios L.F., Christiansen P.A. // J. Chem. Phys. 1985. V. 82. P. 2664. https://doi.org/10.1063/1.448263
- Ross R.B., Powers J.M., Atashroo T. et al. // J. Chem. Phys. 1990. V. 93. P. 6654. https://doi.org/10.1063/1.458934
- Heyd J., Scuseria G.E., Ernzerhof M. // J. Chem. Phys. 2003. V. 118. P. 8207. https://doi.org/10.1063/1.1564060
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Grimme S. // J. Comput. Chem. 2006. V. 27. P. 1787. https://doi.org/10.1002/jcc.20495
- Gale J.D., Rohl A.L. // Mol. Simulation. 2003. V. 29. № 5. P. 291. https://doi.org/10.1080/0892702031000104887
- Shi S., Yan L., Yang Y. et al. // J. Comput. Chem. 2003. V. 24. P. 1059. https://doi.org/10.1002/jcc.10171
- Krishnamoorthy A., Mishra A., Kamal D. et al. // SoftwareX. 2021. V. 13. P. 100663. https://doi.org/10.1016/j.softx.2021.100663
- Nomura K., Kalia R.K., Nakano A. et al. // SoftwareX. 2020. V. 11. P. 100389. https://doi.org/10.1016/j.softx.2019.100389
- Platypus // https://github.com/Project-Platypus/Platypus (accessed May 23, 2023)
- Waskom M.L. // J. Open Source Soft. 2021. V. 6. № 60. P. 3021. https://doi.org/10.21105/joss.03021
- Hunter J.D. // Comput. Sci. Eng. 2007. V. 9. № 3. P. 90. https://doi.org/10.1109/MCSE.2007.55
- The pandas development team. Zenodo 2023. pandas-dev/pandas: Pandas (v2.0.1). https://doi.org/10.5281/zenodo.7857418
- Pedregosa F., Varoquaux G., Gramfort A. et al. // J. Machine Learning Res. 2011. V. 12. P. 2825. https://doi.org/10.48550/arXiv.1201.0490
- Schutte W.J., De Boer J.L., Jellinek F. // J. Solid State Chem. 1987. V. 70. № 2. P. 207. https://doi.org/10.1016/0022-4596(87)90057-0
- Bandura A.V., Evarestov R.A. // Sur. Sci. 2015. V. 641. P. 6. https://doi.org/10.1016/j.susc.2015.04.027
- Seifert G., Köhler T., Tenne R. // J. Phys. Chem. B. 2002. V. 106. № 10. P. 2497. https://doi.org/10.1021/jp0131323
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 






