Participation of the enzyme glycogen synthase kinase-3 and voltage-dependent Сa2+ channels in the vesicular cycle of transmitter secretion in cholinergic motor nerve endings of the somatic muscles of the earthworm Lumbricus terrestris

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effects of specific blockers (ω-conotoxin GVIA, ω-agatoxin IVA, nitrendipine, SNX-482, mibefradil) of N, P/Q, L, R, and T-type potential-dependent Ca2+ channels were studied by fluorescence confocal microscopy, as well as the glycogen synthase kinase-3 enzyme inhibitor GSK3 (1-azakenpaullone) on exo-endovesicular cycle processes in cholinergic neuromuscular synapses of somatic muscle of the earthworm Lumbricus terrestris. The mechanisms of the vesicular cycle involve Ca2+ ions entering the terminals through all types of potential-dependent Ca2+ channels of the presynaptic membrane. At the same time, N-, P/Q-, and L-type Ca2+ channels contribute most to endocytosis processes, whereas only N- and P/Q-type channels contribute to exocytosis. Dynamin-dependent endocytosis plays an essential role in recycling processes, and the recovery of vesicular pools in such synapses is predominantly facilitated by clathrin-dependent endocytosis. It can be considered that the basic mechanisms of vesicular cycle regulation in motor neuromuscular synapses are common to the entire phylogenetic tree of vertebrates and invertebrates, beginning with annelids. At the same time, the importance of individual regulatory elements of the vesicular secretion machinery in annelids has its own distinct specificity.

Texto integral

Acesso é fechado

Sobre autores

L. Nurullin

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Kazan State Medical University

Autor responsável pela correspondência
Email: lenizn@yandex.ru
Rússia, Kazan; Kazan

D. Peshehonov

Kazan State Medical University

Email: lenizn@yandex.ru
Rússia, Kazan

E. Volkov

Kazan State Medical University

Email: euroworm@mail.ru
Rússia, Kazan

Bibliografia

  1. Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4: a011353. https://doi.org/10.1101/cshperspect.a011353
  2. Watanabe S, Boucrot E (2017) Fast and ultrafast endocytosis. Curr Opin Cell Biol 47: 64–71. https://doi.org/10.1016/j.ceb.2017.02.013
  3. Gan Q, Watanabe S (2018) Synaptic vesicle endocytosis in different model systems. Front Cell Neurosci 12: 171. https://doi.org/10.3389/fncel.2018.00171
  4. Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A (2022) Role of clathrin and dynamin in clathrin mediated endocytosis/synaptic vesicle recycling and implications in neurological diseases. Front Cell Neurosci 15: 754110. https://doi.org/10.3389/fncel.2021.754110
  5. Clayton EL, Sue N, Smillie KJ, O'Leary T, Bache N, Cheung G, Cole AR, Wyllie DJ, Sutherland C, Robinson PJ, Cousin MA (2010) Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci 13: 845–851. https://doi.org/10.1038/nn.2571
  6. Xue L, Zhang Z, McNeil BD, Luo F, Wu XS, Sheng J, Shin W, Wu LG (2012) Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep 1: 632–638. https://doi.org/10.1016/j.celrep.2012.04.011
  7. Parry L, Tanner A, Vinther J (2014) The origin of annelids. Front Palaeontology 57: 1091–1103. https://doi.org/10.1111/pala.12129
  8. Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: 497–507. https://doi.org/10.1093/icb/icj053
  9. Nurullin LF, Almazov ND, Volkov EM (2024) Calcium-binding proteins in synaptic vesicle exo- and endocytosis in somatic motor nerve endings of the earthworm Lumbricus terrestris. J Evol Biochem Phys 60: 1818–1825. https://doi.org/10.1134/S0022093024050144
  10. Nurullin LF, Volkov EM (2020) Immunofluorescent identification of α1 isoform subunits of voltage-gated Ca2+-channels of CaV1, CaV2, and CaV3 families in areas of cholinergic synapses of somatic muscles in earthworm Lumbricus terrestris. Cell Tiss Biol 14: 316–323. https://doi.org/10.1134/S1990519X20040070
  11. Nurullin LF, Volkov EM (2024) Immunofluorescent identification of dystrophin, actin, and light and heavy myosin chains in somatic cells of earthworm Lumbricus terrestris. Cell Tiss Biol 18: 341–346. https://doi.org/10.1134/S1990519X24700287
  12. Nurullin LF, Almazov ND, Volkov EM (2023) Immunofluorescent identification of GABAergic structures in the somatic muscle of the earthworm Lumbricus terrestris. Biochem Moscow Suppl Ser A 17: 208–213. https://doi.org/10.1134/S1990747823040074
  13. Coleman WL, McCartney LE (2023) GABA has a presynaptic inhibitory effect at Lumbricus terrestris body wall muscle synapses. MicroPubl Biol 2023: 10.17912/micropub.biology.001055. https://doi.org/10.17912/micropub.biology.001055
  14. Dolphin AC (2021) Functions of presynaptic voltage-gated calcium channels. Function (Oxf) 2: zqaa027. https://doi.org/10.1093/function/zqaa027
  15. Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Südhof TC (2011) RIM proteins tether Ca(2+) channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144: 282–295. https://doi.org/10.1016/j.cell.2010.12.029
  16. Kusch V, Bornschein G, Loreth D, Bank J, Jordan J, Baur D, Watanabe M, Kulik A, Heckmann M, Eilers J, Schmidt H (2018) Munc13-3 Is required for the developmental localization of Ca(2+) channels to active zones and the nanopositioning of Cav2.1 near release sensors. Cell Rep 22: 1965–1973. https://doi.org/10.1016/j.celrep.2018.02.010
  17. Li L, Bischofberger J, Jonas P (2007) Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J Neurosci 27: 13420–13429. https://doi.org/10.1523/jneurosci.1709-07.2007
  18. Krick N, Ryglewski S, Pichler A, Bikbaev A, Götz T, Kobler O, Heine M, Thomas U, Duch C (2021) Separation of presynaptic Cav2 and Cav1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA. Proc Natl Acad Sci U S A 118: e2106621118. https://doi.org/10.1073/pnas.2106621118
  19. Mueller BD, Merrill SA, Watanabe S, Liu P, Niu L, Singh A, Maldonado-Catala P, Cherry A, Rich MS, Silva M, Maricq AV, Wang ZW, Jorgensen EM (2023) CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. Elife 12: e81407. https://doi.org/10.7554/eLife.81407
  20. Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421–432.https://doi.org/10.1016/0092-8674(89)90027-5
  21. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147. https://doi.org/10.1038/nrm1313
  22. Ramachandran R, Schmid SL (2018) The dynamin superfamily. Curr Biol 28: R411–R416. https://doi.org/10.1016/j.cub.2017.12.013
  23. Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9: 2595–2609. https://doi.org/10.1091/mbc.9.9.2595
  24. Ferguson SM, Brasnjo G, Hayashi M, Wölfel M, Collesi C, Giovedi S, Raimondi A, Gong LW, Ariel P, Paradise S, O'toole E, Flavell R, Cremona O, Miesenböck G, Ryan TA, De Camilli P (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316: 570–574. https://doi.org/10.1126/science.1140621
  25. Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A 91: 644–648. https://doi.org/10.1073/pnas.91.2.644
  26. Raimondi A, Ferguson SM, Lou X, Armbruster M, Paradise S, Giovedi S, Messa M, Kono N, Takasaki J, Cappello V, O'Toole E, Ryan TA, De Camilli P (2011) Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70: 1100–1114. https://doi.org/10.1016/j.neuron.2011.04.031
  27. van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411–414. https://doi.org/10.1038/351411a0
  28. Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM (1997) A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A 94: 10438–10443. https://doi.org/10.1073/pnas.94.19.10438
  29. Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103: 17955–17960. https://doi.org/10.1073/pnas.0606212103
  30. Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ (2015) Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 20: 810–819. https://doi.org/10.1038/mp.2015.56
  31. Shi B, Jin YH, Wu LG (2022) Dynamin 1 controls vesicle size and endocytosis at hippocampal synapses. Cell Calcium 103: 102564. https://doi.org/10.1016/j.ceca.2022.102564
  32. Lu W, Ma H, Sheng ZH, Mochida S (2009) Dynamin and activity regulate synaptic vesicle recycling in sympathetic neurons. J Biol Chem 284: 1930–1937. https://doi.org/10.1074/jbc.m803691200
  33. Kasprowicz J, Kuenen S, Swerts J, Miskiewicz K, Verstreken P (2014) Dynamin photoinactivation blocks Clathrin and α-adaptin recruitment and induces bulk membrane retrieval. J Cell Biol 204: 1141–1156. https://doi.org/10.1083/jcb.201310090
  34. Douthitt HL, Luo F, McCann SD, Meriney SD (2011) Dynasore, an inhibitor of dynamin, increases the probability of transmitter release. Neuroscience 172: 187–195. https://doi.org/10.1016/j.neuroscience.2010.10.002

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Fluorescence of neuromuscular synapses of earthworm somatic muscle cells loaded with lipophilic dye FM2-10: (a) — 0 min, (b) — after 5 min of dye “unloading” at 40 mM K+ in the surrounding solution. Scale bar: 20 µm.

Baixar (105KB)
3. Fig. 2. Effect of DMSO, GSK3 enzyme inhibitor 1-azakepaullone, potential-dependent Ca2+ channel inhibitors ω-conotoxin GVIA, ω-agatoxin IVA, nitrendipine, SNX-482, mibefradil on “loading” of motor nerve terminals of earthworm somatic muscle preparation with lipophilic dye FM2-10. a. u. — relative units.

Baixar (144KB)
4. Fig. 3. Effect of DMSO, GSK3 inhibitor 1-azakepaullone, potential-dependent Ca2+ channel inhibitors ω-conotoxin GVIA, ω-agatoxin IVA, nitrendipine, SNX-482, mibefradil on the “unloading” of motor nerve terminals of earthworm somatic muscle preparation stained with fluorescent dye FM2-10. In a separate series of experiments, the fading of FM2-10 dye in a normal solution (4 mM K+) was monitored for 5 min.

Baixar (209KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025