Antioxidant and phenoloxidase protective systems activity in the gut of Pycnoscelus nigra (Brunner, 1865) roaches on different food substrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper investigates changes in the activity of antioxidant enzymes and the phenoloxidase cascade in the Pycnoscelus nigra (Brunner von Wattenwyl, 1865) roach gut in adaptation to new food substrates. Several different food substrates were chosen. The primary goal of the paper was to examine enzyme activity dynamics of the roaches during their adaptation to new food substrates. Phenoloxidase, catalase and peroxidase activity in roach gut was measured at different points in time. Spectrophotometry was utilized to determine enzyme specific activities via optical density. During the experiment the morphometric parameters of the roaches were measured. Various degrees of enzyme activity were observed depending on the experiment stage and food substrates. Certain patterns of adaptation to new food substrates were shown. The roaches experienced varying degrees of stress reflected in the morphometric parameters of individuals. Understanding the process of insect adaptation to new food substrates may perspectively be useful in combating insect pest dispersal, as well as in insect biotechnology.

Full Text

Restricted Access

About the authors

A. N. Gladkih

Institute of biochemistry and genetics of Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University

Author for correspondence.
Email: gladkih4leksandar@yandex.ru
Russian Federation, Ufa; Ufa

D. A. Khaliullin

South-Ural Botanical Garden-Institute of Ufa Federal Research Centre of the Russian Academy of Sciences

Email: gladkih4leksandar@yandex.ru
Russian Federation, Ufa

L. R. Gaifullina

Institute of biochemistry and genetics of Ufa Federal Research Centre of the Russian Academy of Sciences

Email: gladkih4leksandar@yandex.ru
Russian Federation, Ufa

E. S. Saltykova

Institute of biochemistry and genetics of Ufa Federal Research Centre of the Russian Academy of Sciences

Email: gladkih4leksandar@yandex.ru
Russian Federation, Ufa

References

  1. Boneva B, Marutsov P, Zhelev G (2023) A survey of the distribution of synanthropic cockroaches in animal farms and food processing plants in Bulgaria. Trakia J Sci 21 (3): 217.
  2. Naher A, Afroz S, Hamid S (2018) Cockroach associated foodborne pathogens: Distribution and antibiogram. Bangladesh Med Res Counc Bull 44 (1): 30–38.
  3. Mullins D (2015) Physiology of Environmental Adaptations and Resource Acquisition in Cockroaches. Ann Rev Entomol 60 (1): 473–492.
  4. Princis K (1964) Blattariae: Subordo Blaberoidea: Fam.: Panchloridae, Gynopeltididae, Derocalymmidae, Perisphaeriidae, Pycnoscelididae. In: Beier, M. (Ed.). Orthopterorum Catalogus. Pars 6. W. Junk, 's-Gravenhage: 174–281.
  5. Roth LM, Willis ER (1960) The biotic associations of cockroaches. Smithsonian Miscellaneous Collections, Washington D.C.
  6. Roth LM, Willis ER (1957) The medical and veterinary importance of cockroaches. Smithsonian Miscellaneous Collections, Washington D.C.
  7. Gade B, Parker Jr ED (1997) The effect of life cycle stage and genotype on desiccation tolerance in the colonizing parthenogenetic cockroach Pycnoscelus surinamensis and its sexual ancestor P. indicus. J Evol Biol 10 (4): 479–493.
  8. Martin P, Kohlmann K, Scholtz G (2007) The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94: 843–846.
  9. Zakharova LA (2009) Evolution of adaptive immunity. Biol Bull 36 (2): 107–116. https://doi.org/10.1134/S1062359009020034
  10. Гайфуллина ЛР, Салтыкова ЕС, Николенко АГ (2006) Структура и механизмы гуморального иммунитета насекомых. Усп соврем биол 126 (6): 592–604. [Gaifullina LR, Saltykova ES, Nikolenko AG (2006) The structure and mechanisms of humoral immunity in insects. Usp sovrem biol 126 (6): 592–604 (In Russ.)]
  11. Chen CC, Chen CS (1995) Brugia pahangi: Effects of melanization on the uptake of nutrients by microfilariae in vitro. Exp Parasitol 81: 72–78.
  12. Eleftherianos I, Revenis C (2011) Role and importance of phenoloxidase in insect hemostasis. J Innate Immun 3: 28–33.
  13. Whitten MM, Ratcliffe NA (1999) In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaberus discoidalis. J Insect Physiol 45 (7): 667–675.
  14. Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28(19): 3015–3026
  15. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9 (10): 490–498.
  16. Меньщикова ЕБ, Зенков НК, Шергин СМ (1994) Биохимия окислительного стресса. Оксиданты и антиоксиданты. Новосибирск: Издательство СО РАМН.
  17. Felton GW, Summers CB (1995) Antioxidant systems in insects. Archiv Insect Biochem Physiol 29 (2): 187–197
  18. Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52 (1): 11–20.
  19. Gowrisankar R, Sumithramma N, Mulimani V, Pradhan SK, Gundreddy R. (2023) Blatticomposting: A Sustainable Approach for Organic Waste Management. Int J Env Climate Change 13 (9): 754–762.
  20. Гладких АН (2018) Влияние биогумуса Pycnoscelus nigra (Brunner) на развитие Pisum sativum (L.) в водных культурах. Актуальные проблемы экологии и природопользования в современных условиях: Материалы Международной научно-практической конференции. 2: 232–235.
  21. Stupak EE, Gilvanova EA, Gladkikh AN (2021) Bacillus pumilus as a supplement for waste recycling by insect. In OP Conference Series: Earth Environment Sci 666 (4). https://doi.org/10.1088/1755-1315/666/4/042092
  22. Дремова ВП, Алешо НА (2011) Тараканы. Биология, экология, санитарно-эпидемиологическое значение, контроль численности синантропных тараканов. М.: Товарищество научных изданий КМК.
  23. Parker Jr ED, Niklasson M (1995) Desiccation resistance among clones in the invading parthenogenetic cockroach, Pycnoscelus surinamensis: a search for the general‐purpose genotype. J Evol Biol 8 (3): 331–337.
  24. Гладких АН (2017) Морфометрические характеристики и особенности экологии тараканов Pycnoscelus nigra в условиях неволи. Биология будущего: материалы конференции 3: 40–41.
  25. Reddi G. Studies on the Biology and Substrate Preference of the Burrowing Cockroach, Pycnoscelus surinamensis (Linn.) (Blaberidae: Blattodea). Dissertation, University of Agricultural Sciences, Bangalore.
  26. Компанцева ТВ (2004) Особенности содержания в культуре некоторых пластинчатоусых жуков (Coleoptera, Scarabaeidae). Беспозвоночные животные в коллекциях зоопарков. Материалы Второго Международного семинара, г. Москва, 15–20 ноября 2004 г.: Межвед. сб. науч. и науч.-метод. тр.-М.: Московский зоопарк. 15: 93.
  27. Saltykova ES, Karimova AA, Gataullin AR, Gaifullina LR, Matniyazov RT, Frolova MA, Albulov AI, Nikolenko AG (2016) The effect of high-molecular weight chitosans on the antioxidant and immune systems of the honeybee. Applied Biochemistry and Microbiology 52: 553–557
  28. Rauschenbach IYu (1997) Stress response in insects: mechanism, genetic control, and role in adaptation. Russ J Genet 33 (8): 1110–1118.
  29. Бояркин АН (1951) Быстрый метод определения активности пероксидазы. Биохимия 16: 352–357.
  30. Королюк МА, Иванова ЛИ, Токарева ИИ, Майорова ВЕ (1988) Метод определения активности каталазы. Лабораторное дело 1: 16–19.
  31. Scopes RK (1993) Protein purification: principles and practice. Springer Science & Business media.
  32. Roth LM (1998) The cockroach genus Pycnoscelus Scudder, with a description of Pycnoscelus femapterus, sp. nov.(Blattaria: Blaberidae: Pycnoscelinae). Oriental Insects 32 (1): 93–130.
  33. Glantz SA (1997) Primer of biostatistics. McGraw-Hill, Health Professions Division.
  34. Котеров АН, Ушенкова ЛН, Зубенкова ЭС, Калинина МВ, Бирюков АП, Ласточкина ЕМ, Молодцова ДВ, Вайнсон АА (2019) Сила связи. Сообщение 2. Градации величины корреляции. Медицинская радиология и радиационная безопасность. 64 (6): 12–24.
  35. Gonçalves EM, Pinheiro J, Abreu M, Brandão TR, Silva CL (2010) Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. Journal of Food Engineering 97(4): 574–581.
  36. Popescu Di, Frum A, Dobrea CM, Cristea R, Gligor FG, Vicas LG, Ionete RE, Sutan NA, Georgescu C (2023) Comparative antioxidant and antimicrobial activities of several conifer needles and bark extracts. Pharmaceutics 16 (1): 52.
  37. Zeng WC, He Q, Sun Q, Zhong K, Gao H (2012) Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. International journal of food microbiology 153 (1-2): 78–84.
  38. Lee J, Kang HK, Cheong H, Park Y (2021) A novel antimicrobial peptides from pine needles of Pinus densiflora Sieb. et Zucc. against foodborne bacteria. Front Microbiol 12: 662462.
  39. Feeny PP, Bostock H (1968) Seasonal changes in the tannin content of oak leaves. Phytochemistry 7 (5): 871–880.
  40. Nahm KH (2003) Evaluation of the nitrogen content in poultry manure. World's Poultry Sci J 59 (1): 77–88.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phenoloxidase activity: activity values ​​that differ significantly from each other (p < 0.05) are indicated in the figure by Latin letters (a, b, c, d, e). Differences within groups indicated by the same letter are statistically insignificant.

Download (342KB)
3. Fig. 2. Catalase activity: Significant differences in activity values ​​that differ significantly from each other (p < 0.05) are indicated in the figure by Latin letters (a, b, c, d). Differences within groups indicated by the same letter are statistically insignificant.

Download (339KB)
4. Fig. 3. Peroxidase activity: activity values ​​that differ significantly from each other (p < 0.05) are indicated in the figure by Latin letters (a, b, c, d, e, f, g). Differences within groups indicated by the same letter are statistically insignificant.

Download (332KB)

Copyright (c) 2025 Russian Academy of Sciences