Determination of quercetin in pharmaceuticals by digital colorimetry using assemblable microfluidic systems based on paper modified with gold and silver nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the actual fields of application of paper-based microfluidic systems (µPADs) is the determination of biologically active substances in various objects, including pharmaceuticals. Often such determination is carried out as a variant of screening analysis to identify samples that should be investigated in more detail by highly informative but relatively expensive methods. In this work, an original method for the colorometric determination of quercetin using microfluidic analytical systems based on paper modified with gold and silver nanoparticles of different morphologies is proposed. It is based on the reduction of silver(I) ions to metallic silver under the action of quercetin, which leads to a contrast color change of the BMFS detection zones. The possibility of using a monitor calibrator and a smartphone camera to record the analytical signal was demonstrated. Optimal conditions of the analysis have been selected. It is shown that the type of nanoparticles affects the sensitivity coefficient of quercetin detection, which is promising for the creation of multisensor systems for discrimination of samples of complex composition. The limits of quercetin detection under the selected conditions are 70-120 ng depending on the nature of the analytical reagent and the method of analytical signal registration. The range of detectable contents is 2-10 µg. Sufficient sample volume for analysis does not exceed 25 µl. The selectivity of the proposed method for the determination of quercetin in relation to a series of common inorganic ions and organic substances was evaluated. The applicability of the developed approach for the determination of quercetin in three pharmaceutical preparations is shown.

Full Text

Restricted Access

About the authors

A. A. Furletov

Moscow State University named after M.V. Lomonosov, Department of Chemistry

Author for correspondence.
Email: aleksei_furletov@mail.ru
Russian Federation, Moscow

A. V. Yakimenko

Moscow State University named after M.V. Lomonosov, Department of Chemistry

Email: aleksei_furletov@mail.ru
Russian Federation, Moscow

V. V. Apyari

Moscow State University named after M.V. Lomonosov, Department of Chemistry

Email: aleksei_furletov@mail.ru
Russian Federation, Moscow

C. G. Dmitrienko

Moscow State University named after M.V. Lomonosov, Department of Chemistry

Email: aleksei_furletov@mail.ru
Russian Federation, Moscow

I. I. Torocheshnikova

Moscow State University named after M.V. Lomonosov, Department of Chemistry

Email: aleksei_furletov@mail.ru
Russian Federation, Moscow

References

  1. Silva-Neto H.A., Arantes I.V.S., Ferreira A.L., do Nascimento G.H.M., Meloni G.N., de Araujo W.R., Paixão T.R.L.C., Coltro W.K.T. Recent advances on paper-based microfluidic devices for bioanalysis // Trends Anal. Chem. 2023. V. 158. Article 116893. https://doi.org/10.1016/j.trac.2022.116893
  2. Morbioli G.G., Mazzu-Nascimento T., Stockton A.M., Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) – A review // Anal. Chim. Acta. 2017. V. 970. P. 1. https://doi.org/10.1016/j.aca.2017.03.037
  3. Chen T., Sun C., Abbas S.C., Alam N., Qiang S., Tian X., Fu C., Zhang H., Xia Y., Liu L., Ni Y., Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications // Anal. Chim. Acta. 2024. V. 1321. Article 342877. https://doi.org/10.1016/j.aca.2024.342877
  4. Rypar T., Bezdekova J., Pavelicova K., Vodova M., Adam V., Vaculovicova M., Macka M. Low-tech vs. high-tech approaches in μPADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing // Talanta. 2024. V. 266. Article 124911. https://doi.org/10.1016/j.talanta.2023.124911
  5. Mahadeva S.K., Walus K., Stoeber B. Paper as a platform for sensing applications and other devices: A review // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 8345. https://doi.org/10.1021/acsami.5b00373
  6. Mao K., Min X., Zhang H., Zhang K., Cao H., Guo Y., Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery // J. Contr. Release. 2020. V. 322. P. 187. https://doi.org/10.1016/j.jconrel.2020.03.010
  7. Pan Y., Mao K., Hui Q., Wang B., Cooper J., Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance // Trends Anal. Chem. 2022. V. 157. Article 116760. https://doi.org/10.1016/j.trac.2022.116760
  8. Asano H., Shiraishi Y. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography // Anal. Chim. Acta. 2015. V. 883. P. 55. https://doi.org/10.1016/j.aca.2015.04.014
  9. Yao X., Jia T., Xie C. Facial fabrication of paper-based flexible electronics with flash foam stamp lithography // Microsyst. Technol. 2017. V. 23. P. 4419. https://doi.org/10.1007/s00542-016-3207-6
  10. Malekghasemi S., Kahveci E., Duman M. Rapid and alternative fabrication method for microfluidic paper based analytical devices // Talanta. 2016. V. 159. P. 401. https://doi.org/10.1016/j.talanta.2016.06.040
  11. Henares T.G., Yamada K., Takaki S., Suzuki K., Citterio D. “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device // Sens. Actuators B: Chem. 2017. V. 244. P. 1129. https://doi.org/10.1016/j.snb.2017.01.088
  12. Motalebizadeh A., Asiaei S. Micro-fabrication by wax spraying for rapid smartphone-based microfluidic devises (μPADs) using technical drawing pens and in-house formulated aqueous inks // Anal. Chim. Acta. 2020. V. 603. Article 113777. https://doi.org/10.1016/j.ab.2020.113777
  13. Chiang C.-K., Kurniawan A., Kao C.-Y., Wang M.-J. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays // Talanta. 2019. V. 194. P. 837. https://doi.org/10.1016/j.talanta.2018.10.104
  14. Ramesh H., Prabhu A., Nandagopal G., Dheivasigamani T., Kumar N. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches // Microchem. J. 2021. V. 165. Article 106126. https://doi.org/10.1016/j.microc.2021.106126
  15. de Oliveira R.A., Camargo F., Pesquero N.C., Faria R.C. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis // Anal. Chim. Acta. 2017. V. 957. P. 40. https://doi.org/10.1016/j.aca.2017.01.002
  16. Abdulsattar J.O., Hadi H., Richardson S., Iles A., Pamme N. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs) // Anal. Chim. Acta. 2020. V. 1136. P. 196. https://doi.org/10.1016/j.aca.2020.09.045
  17. Gutorova S.V., Apyari V.V., Kalinin V.I., Furletov A.A., Tolmacheva V.V., Gorbunova M.V., Dmitrienko S.G. Composable paper-based analytical devices for determination of flavonoids // Sens. Actuators B: Chem. 2021. V. 331. Article 129398. https://doi.org/10.1016/j.snb.2020.129398
  18. Prakobkij A., Sukapanon S., Chunta S., Jarujamrus P. Mickey mouse-shaped laminated paper-based analytical device in simultaneous total cholesterol and glucose determination in whole blood // Anal. Chim. Acta. 2023. V. 1263. Article 341303. https://doi.org/10.1016/j.aca.2023.341303
  19. Zhang J., Li W., Zhang B., Zhang G., Liu C. Screening of angiotensin converting enzyme inhibitors from natural products via origami microfluidic paper-based analytical devices with colorimetric detection // J. Pharm. Biomed. Anal. 2024. V. 238. Article 115833. https://doi.org/10.1016/j.jpba.2023.115833
  20. Heidary O., Akhond M., Hemmateenejad B. A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine // Microchem. J. 2022. V. 182. Article 107886. https://doi.org/10.1016/j.microc.2022.107886
  21. Sammani M.S., Clavijo S., Cerdà V. Recent, advanced sample pretreatments and analytical methods for flavonoids determination in different samples // Trends Anal. Chem. 2021. V. 138. Article 116220. https://doi.org/10.1016/j.trac.2021.116220
  22. Blasa M., Candiracci M., Accorsi A., Piacentini M.P., Piatti E. Honey flavonoids as protection agents against oxidative damage to human red blood cells // Food Chem. 2007. V. 104. P. 1635. https://doi.org/10.1016/j.foodchem.2007.03.014
  23. Kapoor B., Gulati M., Gupta R., Singh S.K., Gupta M., Nabi A., Chawla P.A. A review on plant flavonoids as potential anticancer agents // Curr. Org. Chem. 2021. V. 25. P. 737. https://doi.org/10.2174/1385272824999201126214150
  24. Maleki S.J., Crespo J.F., Cabanillas B. Anti-inflammatory effects of flavonoids // Food Chem. 2019. V. 29. Article 125124. https://doi.org/10.1016/j.foodchem.2019.125124
  25. Khachatoorian R., Arumugaswami V., Raychaudhuri S., Yeh G.K., Maloney E.M., Wang J., Dasgupta A., French S.W. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle // Virology. 2012. V. 433. P. 346. https://doi.org/10.1016/j.virol.2012.08.029
  26. Zhao L.-L., Jayeoye T.J., Ashaolu T.J., Olatunji O.J. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats // Tissue Cell. 2023. V. 85. Article 102254. https://doi.org/10.1016/j.tice.2023.102254
  27. Huang Y., Tang G., Zhang T., Fillet M., Crommen J., Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis // J. Pharm. Biomed. Anal. 2018. V. 147. P. 65. https://doi.org/10.1016/j.jpba.2017.08.021
  28. de Villiers A., Venter P., Pasch H. Recent advances and trends in the liquid-chromatography – Mass spectrometry analysis of flavonoids // J. Chromatogr. A. 2016. V. 1430. P. 16. https://doi.org/10.1016/j.chroma.2015.11.077
  29. Olech M., Pietrzak W., Nowak R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa thunb. leaves and achenes using LC-ESI-MS/MS-MRM methods // Molecules. 2020. V. 25. Article 1804. https://doi.org/10.3390/molecules25081804
  30. Formisano C., Rigano D., Lopatriello A., Sirignano C., Ramaschi G., Arnoldi L., Riva A., Sardone N., Taglialatela-Scafati O. Detailed phytochemical characterization of bergamot polyphenolic fraction (BPF) by UPLC-DAD-MS and LC-NMR // J. Agric. Food Chem. 2019. V. 67. P. 3159. https://doi.org/10.1021/acs.jafc.8b06591
  31. Gotti R. Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants // J. Pharm. Biomed. Anal. 2011. V. 55. P. 775. https://doi.org/10.1016/j.jpba.2010.11.041
  32. Gan Z., Chen Q., Fu Y., Chen G. Determination of bioactive constituents in Flos Sophorae Immaturus and Cortex Fraxini by capillary electrophoresis in combination with far infrared-assisted solvent extraction // Food Chem. 2012. V. 130. P. 1122. https://doi.org/10.1016/j.foodchem.2011.08.018
  33. Soylak M., Ozdemir B., Yilmaz E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-Vis spectrophotometry // Spectrochim. Acta A. 2020. V. 243. Article 118806. https://doi.org/10.1016/j.saa.2020.118806
  34. Furletov A.A., Apyari V.V., Garshev A.V., Dmitrienko S.G., Zolotov Yu.A. Fast and sensitive determination of bioflavonoids using a new analytical system based on label-free silver triangular nanoplates // Sensors. 2022. V. 22. P. 843. https://doi.org/10.3390/s22030843
  35. Dmitrienko S.G., Apyari V.V., Kudrinskaya V.A., Stepanova A.V. Preconcentration of flavonoids on polyurethane foam and their direct determination by diffuse reflectance spectroscopy // Talanta. 2012. V. 102. P. 132. https://doi.org/10.1016/j.talanta.2012.08.017
  36. Pejić N., Kuntić V., Vujić Z., Mićić S. Direct spectrophotometric determination of quercetin in the presence of ascorbic acid // Il. Farm. 2004. V. 59. P. 21. https://doi.org/10.1016/j.farmac.2003.07.013
  37. Xu J., Zhang H., Chen G. Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus // Talanta. 2007. V. 73. P. 932. https://doi.org/10.1016/j.talanta.2007.05.019
  38. Wang M.Y., Zhang D.E., Tong Z.W., Xu X.Y., Yang X.J. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode // J. Appl. Electrochem. 2011. V. 41. P. 189. https://doi.org/10.1007/s10800-010-0223-6
  39. Транова Ю.С., Мыльников П.Ю., Щулькин А.В., Черных И.В., Правкин С.К., Якушева Е.Н. Метод количественного определения кверцетина с помощью ВЭЖХ-МС/МС // Наука молодых. 2022. Т. 10. С. 251. https://doi.org/10.23888/hmj2022103251-258
  40. Дмитриенко С.Г., Степанова А.В., Кудринская В.А., Апяри В.В. Особенности разделения флавоноидов методом обращено-фазовой высокоэффективной хроматографии на колонке Luna 5u C18 (2) // Вестн. Моск. ун-та. Сер. 2. Химия. 2012. Т. 53. С. 369. (Dmitrienko S.G., Stepanova A.V., Kudrinskaya V.A., Apyari V.V. Specifics of separation of flavonoids by reverse phase high performance liquid chromatography on the Luna 5u C18(2) column // Moscow Univ. Chem. Bull. 2012. V. 67. P. 254. https://doi.org/10.3103/s0027131412060041)
  41. Usoltseva L.O., Samarina T.O., Abramchuk S.S., Prokhorova A.F., Beklemishev M.K. Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles // J. Lumin. 2016. V. 179. P. 438. https://doi.org/10.1016/j.jlumin.2016.07.020
  42. Hu Y., Feng T., Li G. A novel solid fluorescence method for the fast determination of quercetin in biological samples based on the quercetin–Al(III) complex imprinted polymer // Spectrochim. Acta A. 2014. V. 118. P. 921. https://doi.org/10.1016/j.saa.2013.09.076
  43. Volikakis G.J., Efstathiou C.E. Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrodes // Talanta. 2000. V. 51. P. 775. https://doi.org/10.1016/s0039-9140(99)00352-5
  44. Nasrollahi S., Ghoreishi S.M., Khoobi A. Nanoporous gold film: Surfactant-assisted synthesis, anodic oxidation and sensing application in electrochemical determination of quercetin // J. Electroanal. Chem. 2020. V. 864. Article 114097. https://doi.org/10.1016/j.jelechem.2020.114097
  45. Hussain M.A., Mahmoud K.M. Determination of quercetin in some natural products using reversed FIA-CL method // Der Pharma Chem. 2011. V. 3. P. 321. https://doi.org/10.1016/0378-4347(94)00549-k
  46. Ященко Н.Н., Житарь С.В., Зиновьева Е.Г. Тест-определение общего содержания фенольных соединений в чае // Бутлеровские сообщения. 2022. Т. 71. C. 99. https://doi.org/10.37952/roi-jbc-01/22-71-8-99
  47. Zaporozhets O.A., Krushynska O.A., Lipkovska N.A., Barvinchenko V.N. A new test method for the evaluation of total antioxidant activity of herbal products // J. Agric. Food Chem. 2004. V. 52. P. 21. https://doi.org/10.1021/jf0343480
  48. Моросанова Е.И., Беляков М.В., Золотов Ю.А. Кремний-титановые ксерогели: получение и использование для определения аскорбиновой кислоты и полифенолов // Журн. аналит. химии. 2012. Т. 67. С. 17. https://doi.org/10.31857/s0044450221010084 (Morosanova E.I., Belyakov M.V., Zolotov Yu.A. Silicon-titanium xerogels: Synthesis and application to the determination of ascorbic acid and polyphenoles // J. Anal. Chem. 2012. V. 67. P. 14. https://doi.org/10.1134/s1061934812010108)
  49. Berasarte I., Albizu G., Santos W.F., de Lima L.F., Ostra M., Vidal M., de Araujo W.R. Chemometrics and digital image colorimetry approaches applied to paper-based analytical devices: A review // Anal. Chim. Acta. 2024. V. 1339. Article 343577. https://doi.org/10.1016/j.aca.2024.343577
  50. Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. Наночастицы золота и серебра в методах оптической молекулярной абсорбционной спектроскопии // Журн. аналит. химии. 2019. Т. 74. С. 26. https://doi.org/10.1134/s0044450219010055 (Apyari V.V., Dmitrienko S.G., Gorbunova M.V., Furletov A.A., Zolotov Yu.A. Gold and silver nanoparticles in optical molecular absorption spectroscopy // J. Anal. Chem. 2019. V. 74. P. 21. https://doi.org/10.1134/s1061934819010052)
  51. Furletov A.A., Apyari V.V., Zaytsev V.D., Sarkisyan A.O., Dmitrienko S.G. Silver triangular nanoplates: Synthesis and application as an analytical reagent in optical molecular spectroscopy. A review // Trends Anal. Chem. 2023. V. 166. Article 117202. https://doi.org/10.1016/j.trac.2023.117202
  52. Millstone J.E., Hurst S.J., Métraux G.S., Cutler J.I., Mirkin C.A. Colloidal gold and silver triangular nanoprisms // Small. 2009. V. 5. P. 646. https://doi.org/10.1002/smll.200801480
  53. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. Синтез и свойства наночастиц серебра: достижения и перспективы // Успехи химии. 2008. Т. 77. С. 242. https://doi.org/10.1070/rc2008v077n03abeh003751 (Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. Synthesis and properties of silver nanoparticles: Advances and prospects // Russ. Chem. Rev. 2008. V. 77. P. 233. https://doi.org/10.1070/rc2008v077n03abeh003751)
  54. Chen H., Cai S., Luo J., Liu X., Ou L., Zhang Q., Liedberg B., Wang Y. Colorimetric biosensing assays based on gold nanoparticles functionalized/combined with non-antibody recognition elements // Trends Anal. Chem. 2024. V. 173. Article 117654. https://doi.org/10.1016/j.trac.2024.117654
  55. Alhajj M., Ghoshal S.K. Sustainability, safety, biocompatibility and benefits of laser ablated gold, silver and copper nanoparticles: A comprehensive review // J. Mol. Liq. 2024. V. 414. Article 126130. https://doi.org/10.1016/j.molliq.2024.126130

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the modular paper-based microfluidic analytical system.

Download (109KB)
3. Fig. 2. Procedure for applying analytical and auxiliary reagents to the detection zones of modular paper-based microfluidic systems.

Download (109KB)
4. Fig. 3. Proposed scheme of quercetin interaction with silver(I) nitrate.

Download (32KB)
5. Fig. 4. Photos of modular paper-based microfluidic systems: (a) system without pH-determining component before application of quercetin; (b) system without pH-determining component after application of 10 nmol of quercetin; (c) system with additional pH-determining component after application of 18 nmol of quercetin. m(Ag) = 1 µg, m(Au) = 1 µg, n(AgNO3) = 100 nmol, t = 10 min.

Download (94KB)
6. Fig. 5. Dependence of the analytical signal (ΔF) on the interaction time at room temperature. 1 – spherical gold nanoparticles, 2 – without nanoparticles, 3 – spherical silver nanoparticles, 4 – triangular silver nanoplates; m(Ag) = 1 µg, m(Au) = 1 µg, n(AgNO3) = 100 nmol, n(NaOH) = 10 nmol, n(quercetin) = 25 nmol.

Download (65KB)
7. Fig. 6. Dependence of the analytical signal (ΔF) on the type and amount of pH-determining component. m(Ag) = 1 µg, m(Au) = 1 µg, n(AgNO3) = 100 nmol, n(NaOH) = 10 nmol, n(quercetin) = 45 nmol, t = 10 min.

Download (192KB)
8. Fig. 7. Dependence of the analytical signal (ΔF) on the amount of silver(I) nitrate. 1 – spherical gold nanoparticles, 2 – without nanoparticles, 3 – spherical silver nanoparticles, 4 – triangular silver nanoplates; m(Ag) = 1 µg, m(Au) = 1 µg, n(NaOH) = 10 nmol, n(quercetin) = 25 nmol, t = 10 min.

Download (70KB)

Copyright (c) 2025 Russian Academy of Sciences