Flotation extraction of copper and zinc ions with N-nonanoyl-N’-methanesulfonylhydrazine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The patterns of concentrating Cu(II) and Zn(II) ions from aqueous solutions with N-nonanoyl-N’-mesylhydrazine by the ion flotation method were studied, depending on the initial concentration of the collagents, the pH value of the solution, conditioning time, and temperature. Based on IR spectroscopy and elemental analysis data, a hypothesis about the composition of the floated compounds was made. It was shown that the extraction of Zn(II) is significantly dependent on the initial concentration of the metal and the conditioning time of the solution. A decrease in the extraction degree of the studied ions with an increase in the solution temperature was established, with this effect being more pronounced for Cu(II). The kinetics of the process were described using the classical first-order model; the obtained flotation rate constants for Zn(II) ions were five times higher than for Cu(II). The conditions for the selective separation of Cu(II) ions in collective flotation conditions were determined.

Full Text

Restricted Access

About the authors

V. N. Vaulina

Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences

Email: larchek.07@mail.ru
Russian Federation, 614013 Perm

L. G. Chekanova

Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: larchek.07@mail.ru
Russian Federation, 614013 Perm

A. B. Mulyukova

Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences

Email: larchek.07@mail.ru
Russian Federation, 614013 Perm

A. V. Kharitonova

Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences

Email: larchek.07@mail.ru
Russian Federation, 614013 Perm

References

  1. Doyle F.M. Ion flotation – Its potential for hydrometallurgical operations // Int. J. Miner. Process. 2003. V. 72. № 1–4. P. 387. https://doi.org/10.1016/S0301-7516(03)00113-3
  2. Гольман А.И. Ионная флотация. М.: Недра, 1982. 144 с.
  3. Grieves R.B. Foam Separations: A Review // Chem. Eng. J. 1975. V. 9. № 2. P. 93. https://doi.org/: 10.1016/0300-9467(75)80001-3
  4. Sebba F. Ion Flotation. New York: Elsevier, 1962. 180 р.
  5. Lazaridis N.K., Peleka E.N., Karapantsios Th.D., Matis K.A. Copper removal from effluents by various separation techniques // Hydrometallurgy. 2004. V. 74. P. 149. https://doi.org/:10.1016/j.hydromet.2004.03.003
  6. Stoica L., Oproiu G.C. Cu(II) Recovery from aqueous systems by flotation // Sep. Sci. Technol. 2005. V. 39. № 4. Р. 893. https://doi.org/10.1081/ss-120028452
  7. Lobacheva O.L. Ion flotation of ytterbium water-salt systems — An innovative aspect of the modern industry // Water. 2021. V. 13. № 24. https://doi.org/10.3390/w13243493
  8. Dzhevaga, N. Lobacheva O. Reduction in technogenic burden on the environment by flotation recovery of rare earth elements from diluted industrial solutions // Applied Sciences. 2021. V. 11. № 16. https://doi.org/10.3390/app11167452
  9. Hoseinian F.S., Irannajad M., Nooshabadi A.J. Ion flotation for removal of Ni(II) and Zn(II) ions from wastewaters // Int. J. Miner. Process. 2015. V. 143. P. 131. https://doi.org/10.1016/j.minpro.2015.07.006
  10. Mohammed A.A., Ebrahim S.E., Alwared A.I. Flotation and sorptive-flotation methods for removal of lead ions from wastewater using SDS as surfactant and Barley Husk as biosorbent // J. Chem. 2013. V. 6. P. 1. https://doi.org/10.1155/2013/413948
  11. Zakeri Khatir M., Abdollahy M., Khalesi M.R., Rezai B. Selective separation of neodymium from synthetic wastewater by ion flotation // Sep. Sci. Technol. 2021. V. 56. № 10. Р. 1802. https://doi.org/10.1080/01496395.2020.1793779
  12. Otero-Calvis A., Ramírez-Serrano B., Coello-Velazquez A. Selectivity in the flotation of copper with xanthate over other ions present in wastewater: An experimental and computational study // J. Mol. Graph. Model. 2020. V. 98. https://doi.org/10.1016/j.jmgm.2020.107587
  13. Радушев А.В., Чеканова Л.Г., Чернова Г.В. Реагенты для ионной флотации цветных металлов (Обзор) // Цветные металлы. 2005. № 7. С. 34.
  14. Soliman M.A., Rashad Gh.M., Mahmoud M.R. Kinetics of ion flotation of Co(II)–EDTA complexes from aqueous solutions // Radiochim. Acta. 2015. V. 103. № 9. P. 643. https://doi.org/10.1515/ract-2015-2390
  15. Svanedal I., Boija S., Norgren M., Edlund H. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions // Langmuir. 2014. V. 30. № 22. P. 6331. https://doi.org/10.1021/la500689n
  16. .Liu Z., Doyle M.F. Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien) // Langmuir. 2009. V. 25. № 16. P. 8927. https://doi.org/10.1021/la900098g
  17. Стрельцов К.А., Абрютин Д.В. Исследование закономерностей процесса ионной флотации меди с использованием диэтилдитиокарбамата натрия // Изв. ВУЗов. Цветная металлургия. 2010. № 2. С. 3. (Strel’tsov K.A., Abryutin D.V. Investigation of regularities of ion flotation of copper with the use of sodium diethyldithiocarbamate. Russ. J. Non-Ferrous Met. 2010. V. 51. № 2. P. 85. https://doi.org/10.3103/S106782121002001X
  18. Радушев А.В., Чеканова Л.Г., Гусев В.Ю. Гидразиды и 1,2–диацилгидразины. Получение, свойства, применение в процессах концентрирования металлов. Екатеринбург: Уральский центр академического обслуживания, 2010. 146 с.
  19. Чеканова Л.Г., Радушев А.В., Воронкова О.А., Байгачева Е.В., Алехина Ю.В. Извлечение ионов цветных металлов из аммиачных растворов с N-ацил-N'-(п-толуолсульфонил)гидразинами // Химическая технология. 2011. № 12. С. 754.
  20. Chekanova L.G., Vaulina V.N., Elchischeva Yu.B., Bardina E.S., Pavlov P.T. The selection of reagents for ionic flotation of non-ferrous metals in the series of N-acyl-N'-mezylhydrazines // Bull. Univ. Karaganda Chem. 2022. V. 108. № 4. P. 171. https://doi.org/ 10.31489/2022Ch4/4-22-13.
  21. Овербергер Ч. Дж., Ансели Ж-П., Ломбардино Дж. Г. Органические соединения со связями азот-азот. Л.: Химия, 1970. 123 с.
  22. Stoica L., Oproiu G.K., Cosmeleata R., Dinculescu R, Dinculescu M. Kinetics of Cu2+ separation by flotation // Sep. Sci. Technol. 2003. V. 38. № 3. Р. 613. https://doi.org/10.1081/SS-120016654
  23. Булатов М. И. Примеры теоретических расчетов в химическом анализе: учебное пособие. Л.: ЛТИ, 1972. 202 с.
  24. Лурье Ю. Ю. Справочник по аналитической химии. М.: Книга по Требованию, 2012. 440 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Structural formula of N-nonanoyl-N-methanesulfonylhydrazine.

Download (11KB)
3. Fig. 1. Dependence of the degree of flotation extraction of Zn(II) ions on pHequal ∙ cZn(initial), mg/l: 1 – 41.0, 2 – 14.8; [Zn(II)] : [MNG] = 1 : 1; τcond = 30 min, τfl = 10 min.

Download (67KB)
4. Fig. 2. Dependence of the degree of flotation extraction of Cu(II) ions on pHequal ∙ cCu(initial), mg/l: 1 – 46.1, 2 – 12.3; [Cu] : [MNG] = 1 : 2; τcond = 10 min, τfl = 10 min.

Download (61KB)
5. Fig. 3. IR spectra of the collector (a) and sublates of Cu(II) (b) and Zn(II) (c).

Download (134KB)
6. Fig. 4. Dependence of the degree of extraction of Cu(II) and Zn(II) ions on pHequal with their joint presence in solution. cMe(II)(initial), mg/l: Cu – 19.96, Zn – 24.24; [Me(II)] : [LMWH] = 1 : 2; τcond = 30 min, τfl. = 10 min.

Download (75KB)
7. Fig. 5. Kinetics of ion flotation of Zn(II) depending on the conditioning time. cZn(initial) = 14.8 mg/l, [Zn(II)] : [MNG] = 1 : 1, pH 8.0−8.5.

Download (122KB)
8. Fig. 6. Kinetics of Cu(II) ion flotation depending on conditioning time. cCu(initial) = 46.1 mg/l, [Cu] : [LMWH] = 1 : 2, pH 6.2−6.8.

Download (76KB)
9. Fig. 7. Effect of temperature on the degree of flotation extraction of Zn(II) and Cu(II) ions. cMe(II)(initial), mg/l: Cu – 46.1, Zn – 42.2; [Zn] : [LMWH] = 1 : 1, [Cu] : [LMWH] = 1 : 2; τcond, min: Zn – 30, Cu – 10; τfl, min: Zn – 10, Cu – 10.

Download (71KB)

Copyright (c) 2024 Russian Academy of Sciences