Detecting trace amounts of peroxides and ammonium nitrate in fingerprints by ion mobility spectrometry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of the sweat and grease deposits (SGD) from fingerprints on the detection efficiency of trace amounts of explosive substances—triacetone triperoxide (TATP), hexamethylene triperoxide diamine (HMTD), and ammonium nitrate (AN) by ion mobility spectrometry in air at atmospheric pressure was investigated. Among the main components of SGD, urea is identified as a positive mode influencer, while lactic acid (LA) affects in a negative mode. The presence of urea or SGD in the sample does not significantly affect the detection of TATP in the positive mode but decreases the efficiency of HMTD ion formation and leads to the appearance of adduct cations of HMTD and urea. The presence of lactic acid or SGD slightly decreases the efficiency of ammonium nitrate ion formation in the negative mode and significantly alters the qualitative composition of HMTD ions, leading to the appearance of HMTD and LA adduct anions. In the absence of any impurities in the sample, the best reduced limit of detection (signal-to-noise ratio = 3σ), estimated at 30–50 pg, was observed for HMTD. The lifetime of HMTD, TATP, and AN traces on aluminum foil under laboratory conditions was determined to be 1, 3, and 12 h for samples with masses of mHMTD 1 × 10–9, 2 × 10–9, and 1 × 10–8 g and surface densities ds of 0.008, 0.016, and 0.08 μg/cm2, respectively; 102 and 103 s for mTATP 1 × 10–5 and 1 × 10–4 g and ds of 80 and 800 μg/cm2, respectively; 12 and 25 h for mAN 3 × 10–8 and 5 × 10–8 g and ds of 0.24 and 0.4 μg/cm2, respectively.

全文:

受限制的访问

作者简介

T. Buryakov

Alexandrov Research Institute of Technology

编辑信件的主要联系方式.
Email: buryakovti@gmail.com
俄罗斯联邦, 188540, Sosnovy Bor, Leningrad oblast

I. Buryakov

Alexandrov Research Institute of Technology

Email: buryakovia@gmail.com
俄罗斯联邦, 188540, Sosnovy Bor, Leningrad oblast

参考

  1. Conklin C. Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals. CISA, 2019. 11 p.
  2. Grantham A. AMAT Insights. Reducing Risks Associated with Ammonium Nitrate. Geneva: GICHD, 2020. 26 p.
  3. Bom di Mall Alam Sutera Gunakan TATP, Pertama di Indonesia. https://www.liputan6.com/news/read/2352321/bom-di-mall-alam-sutera-gunakan-tatp-pertama-di-indonesia (дата обращения 01.09.2022).
  4. Взорвать “мать Сатаны”: ФСБ задержала боевиков, готовивших теракты в Москве. https://ria.ru/20170814/1500327022.html (дата обращения 01.09.2022).
  5. Key Trends in Terrorism. https://www.newamerica.org/international-security/reports/jihadist-terrorism-17-years-after-911/key-trends-in-terrorism/ (дата обращения 01.09.2022).
  6. “Mother of Satan” explosives used in Surabaya church bombings: Police. https://www.thejakartapost.com/news/2018/05/14/mother-of-satan-explosives-used-in-surabaya-church-bombings-police.html (дата обращения 01.09.2022).
  7. Gunasingham A. Sri Lanka attacks: An analysis of the aftermath // Counter Terrorist Trends and Analyses. 2019. V. 11. № 6. P. 8.
  8. Indonesian police seize 5 bombs, explosives during terrorist raids. http://www.xinhuanet.com/english/2021-03/29/c_139844716.htm (дата обращения 01.09.2022).
  9. Sniffing Out Terrorism. https://archives.fbi.gov/archives/news/stories/2005/december/k9_explosives122305 (дата обращения 01.09.2022).
  10. National Academies of Sciences, Engineering, and Medicine. Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals. Washington, DC: The National Academies Press, 2018. P. 154.
  11. Teen charged with terrorism offences. https://www.reuters.com/article/uk-britain-security-idUKL2932538820080429 (дата обращения 01.09.2022).
  12. A look at the explosives used in the New York bombing. https://cen.acs.org/articles/94/i38/look-explosives-used-New-York.html (дата обращения 01.09.2022).
  13. Oslo government district bombing and Utøya island shooting July 22, 2011: The immediate prehospital emergency medical service response. https://sjtrem.biomedcentral.com/articles/10.1186/1757-7241-20-3 (дата обращения 01.09.2022).
  14. Banlaoi R.C. The Lamitan bombing and terrorist threat in the Philippines // Counter Terrorist Trends and Analyses. 2018. V. 10. № 9. P. 1.
  15. Eiceman G.A., Karpas Z., Hill H.H.Jr. Ion Mobility Spectrometry. 3rd Ed. Boca Raton: CRC Press, 2013. 444 p.
  16. DeBono R., Lareau R.T. Trace detection of explosives by ion mobility spectrometry / Counterterrorist Detection Techniques of Explosives / Eds. Cagan A., Oxley J. C. 2nd Ed. Elsevier, 2022. P. 163.
  17. Буряков Т.И., Буряков И.А. Обнаружение следовых количеств взрывчатых веществ в присутствии молочной кислоты методом спектрометрии ионной подвижности // Журн. аналит. химии. 2022. Т. 77. № 1. С. 28. (Buryakov T.I., Buryakov I.A. Detection of trace amounts of explosives in the presence of lactic acid by ion mobility spectrometry // J. Anal. Chem. 2022. V. 77. № 1. P. 43.)
  18. Ewing R.G., Waltman M.J., Atkinson D.A. Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization // Anal. Chem. 2011. V. 83. P. 4838.
  19. Skalny J.D., Orszagh J., Mason N., Rees J.A., Aranda-Gonzalvo Y., Whitmore T.D. Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure // Int. J. Mass Spectrom. 2008. V. 272. P. 12.
  20. Ewing R.G., Waltman M.J. Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge // Int. J. Ion Mobil. Spectrom. 2009. V. 12. P. 65.
  21. Kozole J., Levine L.A., Tomlinson-Phillips J., Stairs J.R. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry // Talanta. 2015. V. 140. P. 10.
  22. Marr A.J., Groves D.M. Ion mobility spectrometry of peroxide explosives TATP and HMTD // Int. J. Ion Mobility Spectrom. 2003. V. 6. P. 59.
  23. Cheng S., Wang W., Zhou Q., Chen C., Peng L., Hua L. et al. Fast switching of CO3–(H2O)n and O2–(H2O)n reactant ions in dopant-assisted negative photoionization ion mobility spectrometry for explosives detection // Anal. Chem. 2014. V. 86. P. 2687.
  24. Jiang D., Peng L., Wen M., Zhou Q., Chen C., Wang X. et al. Dopant-assisted positive photoionization ion mobility spectrometry coupled with time-resolved thermal desorption for on-site detection of TATP and HMTD in complex matrices // Anal. Chem. 2016. V. 88. № 8. P. 4391.
  25. DART (Direct Analysis in Real Time) Applications Notebook. Atmospheric Pressure Ionization High-Resolution Time-of-Flight Mass Spectrometer. JEOL Ltd, 2016. P. 40.
  26. Kalhor H., Alizadeh N. Determining urea levels in dialysis human serum by means of headspace solid phase microextraction coupled with ion mobility spectrometry and on the basis of nanostructured polypyrrole film // Anal. Bioanal. Chem. 2013. V. 405. P. 5333.
  27. Головин А.В., Васильев В.К., Иванов И.А., Беляков В.В., Громов Е.А., Малкин Е.К., Матуско М.А., Першенков В.С. Двухполярный спектрометр ионной подвижности // Датчики и системы. 2018. № 2. С. 4. (Golovin A.V., Vasilyev V.K., Ivanov I.A., Belyakov V.V., Gromov E.A., Malkin E.K., Matusko M.A., Pershenkov V.S. Bipolar ion mobility spectrometer // Sensors and Systems. 2018. № 2. P. 4.)
  28. Головин А.В. Спектрометр ионной подвижности с источником ионизации на основе импульсного коронного разряда. Дис. … канд. тех. наук. Москва: Национальный исследовательский ядерный университет “МИФИ”, 2010. 197 с.
  29. Громов Е.А. Система регистрации и управления спектрометрическим каналом двухполярного спектрометра ионной подвижности. Москва: Дис. … канд. тех. наук. Национальный исследовательский ядерный университет “МИФИ”, 2018. 160 с.
  30. Ehlert S., Walte A., Zimmermann R. Ambient pressure laser-desorption and laser induced acoustic desorption ion-mobility-spectrometry detection of explosives // Anal. Chem. 2013. V. 85. № 22. P. 11047.
  31. Cook G.W. Improving ion mobility spectrometry detection methods for trace forensics and military field applications. Dis. … PhD. Bethesda: The Uniformed Services University of the Health Sciences, 2006. 117 p.
  32. Oxley J.C., Smith J.L., Kirschenbaum L.J., Marimganti S., Vadlamannati S. Detection of explosives in hair using ion mobility spectrometry // J. Forensic Sci. 2008. V. 53. № 3. P. 690.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Fragments of (a) positive and (b) negative spectra in the analysis of a fingerprint containing 1 microgram of GMTD. The peak designations are: 1 – urea cations, 2 – GMTD cations, 3 – adduct cations of GMTD and urea, 4 - MK, 5 – adduct anions of GMTD and MK, 6 – GMTD anions.

下载 (66KB)
3. Fig. 2. Dependences of the amplitude of ion peaks on the residence time of the napkin in the thermal desorption chamber Ai(th): in the positive mode, K0 GMTD = = 1.50 cm2/(In · s) with a mass of the mGMTD sample = 1 microgram (1) or 10 ng (2) and K0 TATP =2.05 cm2/(In · c) with mTATP = 10 mcg (3); in the positive mode, K0 TATP mTATP =10 mcg + abundant fatty deposits (4); in the negative mode, K0 NA = 2.01 cm2/(In · c) mHA = 50 ng + abundant fatty deposits (5) and K0 GMTD = 1.48 cm2/(B · c) mGMTD = 0.5 mcg + abundant fatty deposits (6).

下载 (73KB)
4. Fig. 3. Dependences of ei (mmourea) in the positive mode for ions with K0, cm2/(V · s): black circle – K0 GMTD = 1.50, black rhombus – K0 TATP = 2.05, white rhombus – K0 TATP = 1.33. Dependences of ei (mMK) in the negative mode for ions: white circle – K0 GMTD = 1.48, gray circle – K0 GMTD = 1.91, white square – K0 NA = 2.01. 1 – average fatty deposits + explosive, 2 – abundant fatty deposits + explosive.

下载 (79KB)

版权所有 © Russian Academy of Sciences, 2024